Как новый каскадный интерферометр меняет будущее оптических технологий?

Физики из Гарвардской школы инженерных и прикладных наук (SEAS) разработали революционное устройство — каскадный интерферометр, который открывает новые возможности для управления светом. В отличие от традиционных интерферометров Маха-Цендера, новое устройство позволяет одновременно контролировать частоту, интенсивность и режим распространения света в компактном формате.
Как новый каскадный интерферометр меняет будущее оптических технологий?
Изображение носит иллюстративный характер

Исследование, опубликованное в престижном журнале Science Advances, возглавил постдокторант Цзиньшэн Лу под руководством Федерико Капассо, профессора прикладной физики имени Роберта Л. Уоллеса и старшего научного сотрудника по электротехнике имени Винтона Хейса. Все устройства были изготовлены в Центре наносистем Гарварда.

Традиционные интерферометры Маха-Цендера имеют существенные ограничения. Они разделяют световые лучи на два пути, но не могут одновременно контролировать различные аспекты света. Для комплексного управления светом требуется последовательное размещение нескольких интерферометров, что увеличивает размер системы и ограничивает передачу сигнала.

Новый каскадный интерферометр представляет собой переосмысление устройства Маха-Цендера, интегрированного в один волновод на кремниевой платформе. Ключевая инновация заключается в уникальном наноразмерном узоре решеток, вытравленных в волноводе. Эта конструкция создает множественные пути для сигнала в одном компактном устройстве.

«Наш интерферометр позволяет контролировать обмен энергией между различными модами света», — объясняет Цзиньшэн Лу. Это дает возможность точно формировать спектр света путем тонкой настройки интенсивности и характеристик световых волн. Свет может перемещаться через волновод в различных поперечных модах, создавая четкие, резкие линии цвета с определенными характеристиками.

Команда исследователей также разработала теоретическую основу для расширения физических принципов устройства на множество различных мод света, что открывает еще более широкие перспективы применения.

Потенциальные области применения каскадного интерферометра впечатляют своим разнообразием. Устройство может найти применение в передовых нанофотонных датчиках, квантовых вычислениях на чипе, волоконно-оптических коммуникационных сетях, газовых сенсорах и оптических компьютерах.

Способность одновременно контролировать амплитуду и фазу света (оптическое спектральное формирование) в одном компактном устройстве представляет собой значительный прорыв в области фотоники. Это открытие может стать ключевым элементом для следующего поколения оптических технологий, где точное управление светом имеет решающее значение.


Новое на сайте

19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии?
Ссылка