Ssylka

Могут ли молекулы объяснить тайны непериодичности?

Математики и дизайнеры всегда интересовались, как отдельные формы могут покрывать плоскость без повторения узоров. Непериодичные раскладки завораживают своей способностью заполнять пространство уникальными последовательностями.
Могут ли молекулы объяснить тайны непериодичности?
Изображение носит иллюстративный характер

В 2018 году химик Карл-Хайнц Эрнст проводил эксперимент в Швейцарских Федеральных лабораториях материаловедения и технологий в Дюбендорфе, распыляя специальную углеводородную молекулу на серебряный субстрат. Под микроскопом молекулы образовывали трехлучевые спирали, группирующиеся в треугольники разной величины, при этом каждая из примерно ста попыток давала новую, не повторяющуюся последовательность.

В 2023 году математик и специалист по компьютерным наукам Крейг Каплан из Университета Ватерлоо (Канада) открыл elusive einstein tile – единственную фигуру, способную замостить плоскость только непериодичным способом. Это открытие позволило трактовать наблюдаемые молекулярные узоры как «молекулярного эйнштейна», а Каплан отметил, что такое спонтанное возникновение напоминает «сбой в матрице».

Каплан предостерегает, что молекулярные компоненты не полностью соответствуют математическому идеалу: они не могут идеально уплотниться в строго неповторяющуюся мозаику. Однако именно такая нерегулярность может наделить материал уникальными и необычными свойствами.

Явление напоминает квазикристаллы, чья атомная структура демонстрирует упорядоченность без повторяющихся мотивов. В 2024 году физик Феликс Фликер из Университета Бристоля (Англия) разработал компьютерную модель квазикристалла по образцу einstein tile, предсказав такое поведение, которое сравнили с «прокачанным» листом графена, подчеркивая тем самым загадочность механизма формирования подобных структур.

Ключевую роль в возникновении этих узоров играет энтропия – мера беспорядка и статистической вероятности атомной организации. Возможность молекулы легко переходить между двумя зеркальными (хиральными) формами в сочетании с слабыми межмолекулярными связями обеспечивает многочисленные варианты неповторяющихся расположений, способствуя переходу системы к состоянию высокой энтропии.

Исследование баланса между регулярностью и случайностью ярко иллюстрирует принципы теории «порядок через беспорядок». Такой подход открывает перспективы для разработки методов создания квазикристаллов по требованию и способствует установлению неожиданных связей между материалами, математикой и технологией.

Данные исследования, опубликованные в январе 2025 года в журнале Nature Communications, находят отклик в словах Карл-Хайнца Эрнста: «Это природа, занимающаяся математикой», что отражает удивительное единение естественных процессов и сложных математических идей.


Новое на сайте

11802Новая полярная система ZTF J0112+5827: чем обоснована её уникальность? 11801Как перестроение меню отелей способствует снижению углеродного следа? 11800Готовы ли мы к квантовой революции? 11799Могут ли нанотехнологии обеспечить безопасность астронавтов и раскрыть тайны воды на Луне? 11798Возможно ли достичь сверхпроводимости при комнатной температуре? 11797Квант или классика: можно ли измерить природу гравитации? 11796Песчаная катастрофа: разрушая реки и культурное наследие 11795NASA оптимизирует энергопотребление кораблей Voyager 117943D-визуализация динамики атомных перестроек 11793Ключевая роль облачно-радиационной связи в потеплении тихого океана 11792Могут ли железные оксиды стать ключом к доступному фосфору для растений? 11791Отравление или менингит: что стоит за смертями в Конго? 11790Спутник TOI-2818b: ключ к тайнам формирования экзопланет 11789Палладиевые нано-листы: эффективная альтернатива платине 11788Запустит ли гипотакси производство однокристаллических 2D полупроводников?