Математики и дизайнеры всегда интересовались, как отдельные формы могут покрывать плоскость без повторения узоров. Непериодичные раскладки завораживают своей способностью заполнять пространство уникальными последовательностями.

В 2018 году химик Карл-Хайнц Эрнст проводил эксперимент в Швейцарских Федеральных лабораториях материаловедения и технологий в Дюбендорфе, распыляя специальную углеводородную молекулу на серебряный субстрат. Под микроскопом молекулы образовывали трехлучевые спирали, группирующиеся в треугольники разной величины, при этом каждая из примерно ста попыток давала новую, не повторяющуюся последовательность.
В 2023 году математик и специалист по компьютерным наукам Крейг Каплан из Университета Ватерлоо (Канада) открыл elusive einstein tile – единственную фигуру, способную замостить плоскость только непериодичным способом. Это открытие позволило трактовать наблюдаемые молекулярные узоры как «молекулярного эйнштейна», а Каплан отметил, что такое спонтанное возникновение напоминает «сбой в матрице».
Каплан предостерегает, что молекулярные компоненты не полностью соответствуют математическому идеалу: они не могут идеально уплотниться в строго неповторяющуюся мозаику. Однако именно такая нерегулярность может наделить материал уникальными и необычными свойствами.
Явление напоминает квазикристаллы, чья атомная структура демонстрирует упорядоченность без повторяющихся мотивов. В 2024 году физик Феликс Фликер из Университета Бристоля (Англия) разработал компьютерную модель квазикристалла по образцу einstein tile, предсказав такое поведение, которое сравнили с «прокачанным» листом графена, подчеркивая тем самым загадочность механизма формирования подобных структур.
Ключевую роль в возникновении этих узоров играет энтропия – мера беспорядка и статистической вероятности атомной организации. Возможность молекулы легко переходить между двумя зеркальными (хиральными) формами в сочетании с слабыми межмолекулярными связями обеспечивает многочисленные варианты неповторяющихся расположений, способствуя переходу системы к состоянию высокой энтропии.
Исследование баланса между регулярностью и случайностью ярко иллюстрирует принципы теории «порядок через беспорядок». Такой подход открывает перспективы для разработки методов создания квазикристаллов по требованию и способствует установлению неожиданных связей между материалами, математикой и технологией.
Данные исследования, опубликованные в январе 2025 года в журнале Nature Communications, находят отклик в словах Карл-Хайнца Эрнста: «Это природа, занимающаяся математикой», что отражает удивительное единение естественных процессов и сложных математических идей.

Изображение носит иллюстративный характер
В 2018 году химик Карл-Хайнц Эрнст проводил эксперимент в Швейцарских Федеральных лабораториях материаловедения и технологий в Дюбендорфе, распыляя специальную углеводородную молекулу на серебряный субстрат. Под микроскопом молекулы образовывали трехлучевые спирали, группирующиеся в треугольники разной величины, при этом каждая из примерно ста попыток давала новую, не повторяющуюся последовательность.
В 2023 году математик и специалист по компьютерным наукам Крейг Каплан из Университета Ватерлоо (Канада) открыл elusive einstein tile – единственную фигуру, способную замостить плоскость только непериодичным способом. Это открытие позволило трактовать наблюдаемые молекулярные узоры как «молекулярного эйнштейна», а Каплан отметил, что такое спонтанное возникновение напоминает «сбой в матрице».
Каплан предостерегает, что молекулярные компоненты не полностью соответствуют математическому идеалу: они не могут идеально уплотниться в строго неповторяющуюся мозаику. Однако именно такая нерегулярность может наделить материал уникальными и необычными свойствами.
Явление напоминает квазикристаллы, чья атомная структура демонстрирует упорядоченность без повторяющихся мотивов. В 2024 году физик Феликс Фликер из Университета Бристоля (Англия) разработал компьютерную модель квазикристалла по образцу einstein tile, предсказав такое поведение, которое сравнили с «прокачанным» листом графена, подчеркивая тем самым загадочность механизма формирования подобных структур.
Ключевую роль в возникновении этих узоров играет энтропия – мера беспорядка и статистической вероятности атомной организации. Возможность молекулы легко переходить между двумя зеркальными (хиральными) формами в сочетании с слабыми межмолекулярными связями обеспечивает многочисленные варианты неповторяющихся расположений, способствуя переходу системы к состоянию высокой энтропии.
Исследование баланса между регулярностью и случайностью ярко иллюстрирует принципы теории «порядок через беспорядок». Такой подход открывает перспективы для разработки методов создания квазикристаллов по требованию и способствует установлению неожиданных связей между материалами, математикой и технологией.
Данные исследования, опубликованные в январе 2025 года в журнале Nature Communications, находят отклик в словах Карл-Хайнца Эрнста: «Это природа, занимающаяся математикой», что отражает удивительное единение естественных процессов и сложных математических идей.