Ssylka

Как энергия ATP превращается в движение Mycoplasma mobile?

Исследователи впервые расшифровали молекулярный механизм скользящей подвижности Mycoplasma mobile, что стало беспрецедентным достижением в изучении микробных двигательных систем.
Как энергия ATP превращается в движение Mycoplasma mobile?
Изображение носит иллюстративный характер

Бактерии рода микоплазм, среди которых находятся возбудители пневмонии человека, обычно не обладают подвижностью. Исключением является Mycoplasma mobile, обнаруженная в жабрах рыб и способная перемещаться по поверхностям посредством скольжения.

Коллектив ученых из Osaka Metropolitan University под руководством профессора Макото Мияты занимается исследованием данного механизма с 1997 года. Полученные результаты были опубликованы в журнале Science Advances, что подчеркивает важность многолетних усилий в области микробиологии.

Для анализа структуры использовалось криоэлектронное микроскопическое оборудование Осакского университета, достигающее почти атомного разрешения. Такой подход позволил детально рассмотреть состав и конструкцию двигательного комплекса.

Ключевым открытием стало выявление ферментов ATPаз, обеспечивающих работу аппарата через вращательный каталитический механизм. Отдельные единицы комплекса напоминают классические ATP-синтазы, однако их объединение образует абсолютно новую структуру.

Обнаруженный двойной мотор демонстрирует принцип преобразования энергии гидролиза ATP непосредственно в механическое движение, что до сих пор оставалось загадкой для науки. Такой подход позволяет понять, как микроорганизмы используют молекулярные реакции для собственной подвижности.

Работа проливает свет на эволюционное происхождение данных моторов, связывая их с механизмами ATP-синтазы, и открывает новые горизонты в исследованиях энергетического преобразования на молекулярном уровне. Это открытие имеет значение не только для фундаментальной биологии, но и для прикладных наук.

Профессор Макото Мията отметил: «Наше исследование существенно углубляет понимание механизмов преобразования энергии и открывает перспективы для создания наноботов, а также разработки лекарственных средств против микоплазменных инфекций». Его слова отражают потенциал применения результатов данного исследования в будущих технологических и медицинских разработках.

Полученные данные закладывают основу для дальнейших исследований в биофизике и биоинженерии, способствуя разработке новых концепций в создании наномашин и терапевтических средств. Опубликованное в Science Advances исследование подтверждает значимость междисциплинарного сотрудничества и продолжительности научных усилий, начатых в 1997 году.


Новое на сайте

18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными?