Ssylka

Можно ли предсказать коррозию для разработки прочных материалов?

Фантастические сцены разваливающейся инфраструктуры, знакомые по фильмам-антиутопиям, отражают не вымысел, а реальную проблему: коррозия разрушает здания, мосты и автомобили, становясь одной из самых дорогостоящих угроз для экономики.
Можно ли предсказать коррозию для разработки прочных материалов?
Изображение носит иллюстративный характер

Глобальные затраты на борьбу с коррозией оцениваются в триллионы долларов, а в Соединённых Штатах до 3% валового внутреннего продукта расходуется на устранение отказов материалов, вызванных этим процессом.

Учёные из Национальной лаборатории Лоуренса Ливермора (LLNL) работают над прогнозированием коррозионных процессов, чтобы на ранней стадии проектировать более прочные и долговечные материалы. Результаты исследований опубликованы в журнале Nature Communications.

Брэндон Вуд из LLNL подчёркивает, что традиционные представления о коррозии базировались на исторических данных, связанных с определёнными металлическими составами и технологиями обработки, и любые изменения в этих параметрах делают прежние прогнозы ненадёжными – «все ставки пропадают».

Пэнхэ Сяо, бывший постдокторант LLNL, ныне сотрудничающий с Dalhousie University, разработал многомасштабные симуляции, отражающие динамику роста, растворения и изменений состава оксидных плёнок под влиянием факторов, таких как pH и напряжение. Экспериментальные исследования, проведённые под руководством Криса Орми из LLNL, дали важное представление о промежуточном режиме напряжения, ранее остававшемся малоизученным.

Применение продвинутого кинетического моделирования позволило ускорить симуляцию коррозионных процессов с учётом как состава материалов, так и рабочих условий. Особое внимание уделено естественной оксидной плёнке, которая играет роль защитного барьера, и изменениям её свойств (растворение, трещинообразование, увеличение проницаемости) приводящим к разрушениям.

Анализ включал три режима напряжения: низкий, высокий и промежуточный. В случае промежуточного режима исследователи обнаружили конкуренцию между процессами растворения и повторного осаждения, когда молекулы покидают поверхность, перемешиваются и вновь осаждаются, изменяя внешний вид и защитные свойства плёнки.

Интеграция методов симуляции с элементами машинного обучения позволила создать модель, способную прогнозировать время и механизмы коррозии в сложных условиях, что имеет практическое значение для строительства кораблей, мостов и других критичных объектов, где микробатарейные эффекты усиливают процесс разрушения.


Новое на сайте

18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude