Ssylka

Может ли мезопористый кремний открыть новые горизонты в электронике?

Инновационный метод травления позволил создать слои кристаллического кремния с несметным количеством наноразмерных, неупорядоченных пор, что приводит к значительным изменениям его электрических и тепловых характеристик.
Может ли мезопористый кремний открыть новые горизонты в электронике?
Изображение носит иллюстративный характер

Мезопористый кремний представляет собой кристаллический материал с тонкими случайно распределёнными порами, обеспечивающими огромную внутреннюю поверхность и высокую биосовместимость. Эти особенности делают его перспективным для биосенсоров, аккумуляторных анодов, конденсаторов и высокоэффективных теплоизоляционных систем, особенно для кремниевых кубитов, функционирующих при температурах ниже 1 К.

Несмотря на известность данного материала на протяжении десятилетий, вопросы переноса заряда и влияния колебаний решётки оставались неясными, что требовало детального исследования микроскопических механизмов проводимости.

Команда HZB под руководством привилегированного доцента доктора Клауса Хабихта акцентировала внимание на необходимости глубокого изучения процессов транспорта заряда. Доктор Томми Хофман, первый автор исследования, предложил первое надёжное объяснение механизмов переноса, действующих в наноструктурированном кремнии.

В ходе экспериментов были синтезированы серии кремниевых наноструктур с использованием оптимизированного метода травления, при этом проводились измерения температурозависимой электрической проводимости и термоэлектрического эффекта. Анализ показал, что ключевым механизмом является перенос заряда за счёт электронов в расширенных, «волновых» состояниях, а не прыжковый процесс между локализованными состояниями.

При усилении структурного беспорядка возрастает энергия активации, необходимая для преодоления «порога подвижности», что приводит к снижению проводимости. Измерения эффекта Сибека явно продемонстрировали, что колебания решётки не оказывают существенного влияния на транспорт заряда.

Полученные результаты имеют важное практическое значение: мезопористый кремний может служить высокоэффективным теплоизолятором, что особенно актуально для создания кремниевых кубитов в квантовых компьютерах, функционирующих при температурах ниже 1 К. По аналогии с изоляционным пенопластом, этот материал открывает новые возможности в фотогальванике, управлении тепловыми потоками и наноэлектронике.

Надёжное объяснение микроскопической природы переноса заряда в мезопористом кремнии, впервые представленное в исследовании, опубликованном в журнале «Small Structures», закладывает основу для разработки нового класса полупроводников, способных преодолеть ограничения традиционного кремния.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?