Ssylka

Может ли мезопористый кремний открыть новые горизонты в электронике?

Инновационный метод травления позволил создать слои кристаллического кремния с несметным количеством наноразмерных, неупорядоченных пор, что приводит к значительным изменениям его электрических и тепловых характеристик.
Может ли мезопористый кремний открыть новые горизонты в электронике?
Изображение носит иллюстративный характер

Мезопористый кремний представляет собой кристаллический материал с тонкими случайно распределёнными порами, обеспечивающими огромную внутреннюю поверхность и высокую биосовместимость. Эти особенности делают его перспективным для биосенсоров, аккумуляторных анодов, конденсаторов и высокоэффективных теплоизоляционных систем, особенно для кремниевых кубитов, функционирующих при температурах ниже 1 К.

Несмотря на известность данного материала на протяжении десятилетий, вопросы переноса заряда и влияния колебаний решётки оставались неясными, что требовало детального исследования микроскопических механизмов проводимости.

Команда HZB под руководством привилегированного доцента доктора Клауса Хабихта акцентировала внимание на необходимости глубокого изучения процессов транспорта заряда. Доктор Томми Хофман, первый автор исследования, предложил первое надёжное объяснение механизмов переноса, действующих в наноструктурированном кремнии.

В ходе экспериментов были синтезированы серии кремниевых наноструктур с использованием оптимизированного метода травления, при этом проводились измерения температурозависимой электрической проводимости и термоэлектрического эффекта. Анализ показал, что ключевым механизмом является перенос заряда за счёт электронов в расширенных, «волновых» состояниях, а не прыжковый процесс между локализованными состояниями.

При усилении структурного беспорядка возрастает энергия активации, необходимая для преодоления «порога подвижности», что приводит к снижению проводимости. Измерения эффекта Сибека явно продемонстрировали, что колебания решётки не оказывают существенного влияния на транспорт заряда.

Полученные результаты имеют важное практическое значение: мезопористый кремний может служить высокоэффективным теплоизолятором, что особенно актуально для создания кремниевых кубитов в квантовых компьютерах, функционирующих при температурах ниже 1 К. По аналогии с изоляционным пенопластом, этот материал открывает новые возможности в фотогальванике, управлении тепловыми потоками и наноэлектронике.

Надёжное объяснение микроскопической природы переноса заряда в мезопористом кремнии, впервые представленное в исследовании, опубликованном в журнале «Small Structures», закладывает основу для разработки нового класса полупроводников, способных преодолеть ограничения традиционного кремния.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года