Ssylka

Как измерить квантовое состояние фотоэлектронов?

Исследователи Лундского университета в Швеции совершили прорыв в области квантовой физики, разработав новую методику измерения квантового состояния электронов, выбиваемых из атомов под действием высокоэнергетических световых импульсов.
Как измерить квантовое состояние фотоэлектронов?
Изображение носит иллюстративный характер

Когда высокоэнергетический свет в диапазоне экстремального ультрафиолета или рентгеновского излучения попадает на атом или молекулу, он может выбить электрон. Этот процесс, известный как фотоэлектрический эффект, лежит в основе фотоэлектронной спектроскопии. Традиционно фотоэлектрон рассматривался как классическая частица, хотя в действительности это квантовый объект, требующий квантово-механического описания.

Новая методика, названная KRAKEN, позволяет измерять полное квантовое состояние фотоэлектрона. Принцип работы схож с компьютерной томографией в медицине: делается серия двумерных «снимков» с разных углов для реконструкции трехмерного объекта. В эксперименте атомы ионизируются сверхкороткими высокоэнергетическими световыми импульсами, а затем пара лазерных импульсов разных цветов используется для получения двумерных снимков.

Дэвид Бусто, доцент кафедры атомной физики Лундского университета и соавтор исследования, опубликованного в Nature Photonics, отмечает историческую значимость работы. Более века назад Альберт Эйнштейн объяснил фотоэлектрический эффект, заложив основы квантовой механики. В 1981 году Кай Зигбан получил Нобелевскую премию за развитие фотоэлектронной спектроскопии.

Впервые удалось измерить квантовое состояние электронов, испускаемых атомами гелия и аргона. Исследователи обнаружили, что квантовое состояние фотоэлектрона зависит от материала, из которого он выбивается. Эта методика открывает новые возможности для изучения молекулярных газов, жидкостей и твердых тел.

Потенциальные применения включают исследования атмосферной фотохимии и систем преобразования света, таких как солнечные элементы и фотосинтез. Работа объединяет достижения аттосекундной науки и спектроскопии с квантовой информатикой и технологиями.

Успех эксперимента особенно примечателен тем, что предыдущие попытки измерения квантового состояния сталкивались с проблемой необходимости экстремальной стабильности в течение длительных периодов. Исследователям в Лунде удалось достичь требуемых стабильных условий, что открывает новую главу в понимании взаимодействия света и материи на квантовом уровне.


Новое на сайте

18764Рекордный семичасовой космический взрыв не поддается объяснению существующими научными... 18763Зачем черепахам панцирь: для защиты или рытья нор, и все ли умеют в нем прятаться? 18762Почему критическая уязвимость шестилетней давности в роутерах Sierra Wireless угрожает... 18761Как подросток пережил атаку льва 6200 лет назад и почему его похоронили как опасного... 18760Почему случайные травмы превращаются в вечные рисунки на теле? 18759Почему Apple экстренно закрывает уязвимости, используемые для атак на конкретных людей? 18758Какие открытия от Марса до темной материи меняют научную картину мира? 18757Как ультрагорячая супер-Земля TOI-561 b сумела сохранить плотную атмосферу в... 18756Третий межзвездный странник 3I/ATLAS меняет цвет и проявляет аномальную активность 18754Раскопки виселицы XVI века и массовых захоронений казненных мятежников в Гренобле 18753Почему скрытая инфекция убила гигантского крокодила Кассиуса после 40 лет жизни в неволе? 18752Первая церемония Global Space Awards в Лондоне определила лидеров космической индустрии 18751Как новые фишинговые инструменты BlackForce, GhostFrame и гибридные атаки 2025 года... 18750Колоссальная «зеленая стена» Китая: полувековая битва с наступлением пустынь