Ssylka

Как измерить квантовое состояние фотоэлектронов?

Исследователи Лундского университета в Швеции совершили прорыв в области квантовой физики, разработав новую методику измерения квантового состояния электронов, выбиваемых из атомов под действием высокоэнергетических световых импульсов.
Как измерить квантовое состояние фотоэлектронов?
Изображение носит иллюстративный характер

Когда высокоэнергетический свет в диапазоне экстремального ультрафиолета или рентгеновского излучения попадает на атом или молекулу, он может выбить электрон. Этот процесс, известный как фотоэлектрический эффект, лежит в основе фотоэлектронной спектроскопии. Традиционно фотоэлектрон рассматривался как классическая частица, хотя в действительности это квантовый объект, требующий квантово-механического описания.

Новая методика, названная KRAKEN, позволяет измерять полное квантовое состояние фотоэлектрона. Принцип работы схож с компьютерной томографией в медицине: делается серия двумерных «снимков» с разных углов для реконструкции трехмерного объекта. В эксперименте атомы ионизируются сверхкороткими высокоэнергетическими световыми импульсами, а затем пара лазерных импульсов разных цветов используется для получения двумерных снимков.

Дэвид Бусто, доцент кафедры атомной физики Лундского университета и соавтор исследования, опубликованного в Nature Photonics, отмечает историческую значимость работы. Более века назад Альберт Эйнштейн объяснил фотоэлектрический эффект, заложив основы квантовой механики. В 1981 году Кай Зигбан получил Нобелевскую премию за развитие фотоэлектронной спектроскопии.

Впервые удалось измерить квантовое состояние электронов, испускаемых атомами гелия и аргона. Исследователи обнаружили, что квантовое состояние фотоэлектрона зависит от материала, из которого он выбивается. Эта методика открывает новые возможности для изучения молекулярных газов, жидкостей и твердых тел.

Потенциальные применения включают исследования атмосферной фотохимии и систем преобразования света, таких как солнечные элементы и фотосинтез. Работа объединяет достижения аттосекундной науки и спектроскопии с квантовой информатикой и технологиями.

Успех эксперимента особенно примечателен тем, что предыдущие попытки измерения квантового состояния сталкивались с проблемой необходимости экстремальной стабильности в течение длительных периодов. Исследователям в Лунде удалось достичь требуемых стабильных условий, что открывает новую главу в понимании взаимодействия света и материи на квантовом уровне.


Новое на сайте

18685Критическая уязвимость React Server Components с максимальным рейтингом опасности... 18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в...