Ssylka

Могут ли ИИ-модели погоды превзойти традиционные системы прогнозирования?

В области метеорологии происходит значительный технологический прорыв: искусственный интеллект начинает конкурировать с традиционными методами прогнозирования погоды. Исследователи из Школы атмосферных наук Нанкинского университета и Центра численного прогнозирования Земной системы Китайской метеорологической администрации провели масштабное исследование, результаты которого опубликованы в журнале Atmospheric and Oceanic Science Letters.
Могут ли ИИ-модели погоды превзойти традиционные системы прогнозирования?
Изображение носит иллюстративный характер

Современные операционные центры активно используют системы прогнозирования конвективного масштаба, которые получают граничные условия от глобальных численных метеорологических моделей. Новые ИИ-модели погоды предлагают альтернативный подход, обеспечивая впечатляющее преимущество в скорости – они работают примерно в 10 000 раз быстрее традиционных методов, создавая прогнозы на 7-10 дней всего за несколько минут.

В исследовании сравнивались две ИИ-модели – Pangu-weather и Fuxi-weather – с традиционной Глобальной системой прогнозирования (GFS) Национальных центров экологического прогнозирования (NCEP). Результаты показали, что Pangu-weather демонстрирует сопоставимую эффективность с GFS при предоставлении граничных условий для прогнозов конвективного масштаба.

Модель Fuxi-weather показала несколько более низкие результаты по сравнению с Pangu-weather и GFS. Однако важным открытием стало влияние вертикального разрешения на точность прогнозов. Когда количество вертикальных уровней в GFS было уменьшено с 33 до 13 (для соответствия ИИ-моделям), это привело к значительному ухудшению результатов.

Исследование демонстрирует, что ИИ-модели погоды вполне способны заменить традиционные глобальные численные модели в качестве источников граничных условий для систем прогнозирования конвективного масштаба. При этом ожидается, что по мере улучшения вертикального разрешения ИИ-моделей их эффективность будет возрастать.

Данное исследование заполняет важный пробел в понимании применимости ИИ-моделей для метеорологического прогнозирования. Впервые проведен систематический анализ использования ИИ-прогнозируемых граничных условий для управления системами прогнозирования конвективного масштаба.

Результаты открывают новые перспективы в области метеорологического прогнозирования, где скорость и точность имеют решающее значение для принятия важных решений в различных сферах человеческой деятельности.


Новое на сайте

16954Как свободный выбор приложений сотрудниками создает скрытые угрозы для бизнеса? 16953Обречена ли вселенная на коллапс через 10 миллиардов лет? 16952Новая забастовка усугубляет репутационный кризис Boeing 16951Хорнелундское золото: неразгаданная тайна викингов 16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым