Ssylka

Как стабилизировать квантовый компьютер с помощью "темного состояния"?

Исследователи Рочестерского университета совершили прорыв в квантовых вычислениях, впервые экспериментально доказав существование ядерно-спинового темного состояния. Это открытие может решить одну из главных проблем квантовых компьютеров – их крайнюю нестабильность.
Как стабилизировать квантовый компьютер с помощью "темного состояния"?
Изображение носит иллюстративный характер

Квантовые компьютеры обладают потенциалом выполнять сложнейшие вычисления, недоступные традиционным компьютерам. Однако их квантовые состояния очень хрупки и легко нарушаются под воздействием внешних помех, что существенно ограничивает их практическое применение.

Команда под руководством Джона Никола, доцента кафедры физики и астрономии Рочестерского университета, использовала квантовые точки – крошечные полупроводниковые частицы, способные захватывать отдельные электроны. В этих структурах спин электронов используется для хранения информации.

Ядерно-спиновое темное состояние представляет собой особое квантовое состояние, при котором ядро атома становится «невидимым» для внешнего мира. Это происходит, когда спины атомных ядер синхронизируются таким образом, что перестают мешать спину электрона. Исследователи сравнивают это с оркестром и солистом: когда оркестр (ядерные спины) играет синхронно, солист (спин электрона) может выступать без помех.

Для создания темного состояния ученые применили метод динамической ядерной поляризации, позволивший выровнять ядерные спины. Прямые измерения показали значительное снижение взаимодействия между спинами электронов и ядер.

Особенно важно, что открытие сделано в кремнии – материале, широко используемом в современной электронике. Это открывает путь к интеграции ядерно-спиновых темных состояний в будущие квантовые устройства.

Результаты исследования, опубликованные в журнале Nature Physics, имеют широкие практические перспективы. Стабильность темных состояний может улучшить квантовые вычисления, квантовую память и квантовые датчики. Это приведет к созданию более точных систем медицинской визуализации и навигационных технологий.

«Подтверждение существования темного состояния и его свойств не только подтверждает десятилетия теоретических предсказаний, но и открывает путь к разработке более совершенных квантовых систем», – отмечает Джон Никол. Благодаря снижению шума квантовые устройства смогут хранить информацию дольше и выполнять вычисления с большей точностью.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем