Ssylka

Прорыв в квантовых вычислениях: успешное моделирование рассеяния частиц

Международная группа ученых из Национальной лаборатории имени Лоуренса Ливермора (LLNL), InQubator for Quantum Simulations и Университета Тренто достигла значительного прогресса в использовании квантовых компьютеров для моделирования процессов рассеяния частиц. Результаты исследования опубликованы в журнале Physical Review C.
Прорыв в квантовых вычислениях: успешное моделирование рассеяния частиц
Изображение носит иллюстративный характер

Рассеяние частиц – фундаментальное явление, наблюдаемое как в повседневной жизни при столкновении бильярдных шаров, так и в космических масштабах, где сталкивающиеся атомные ядра питают звезды и создают тяжелые элементы. Понимание процессов рассеяния критически важно для раскрытия фундаментальных сил, управляющих Вселенной.

Исследовательская группа разработала алгоритм для квантового компьютера, способный точно моделировать нерелятивистское упругое рассеяние – процесс, при котором частица-снаряд движется значительно медленнее скорости света и отскакивает от неподвижной мишени без потери энергии.

София Кваглиони, ученый из LLNL, подчеркивает: «Эксперименты по рассеянию помогают нам исследовать фундаментальные частицы и их взаимодействия». Рассеяние частиц в веществе позволяет понять, как организована материя на микроскопическом уровне.

Традиционные компьютеры сталкиваются с серьезными ограничениями при моделировании процессов рассеяния. По словам Кайла Вендта из LLNL, «моделирование на основе микроскопической физики для ядер, участвующих в звездных взрывах, потребовало бы суперкомпьютера размером с Луну». Квантовые компьютеры способны кодировать и обрабатывать больше информации, делая их идеальными для таких симуляций.

Разработанный алгоритм работает, отслеживая столкновение частиц шаг за шагом, используя детектор и вариационный метод. Учитывая волновую природу частиц в квантовой механике, алгоритм измеряет сдвиг положения волны в её цикле, создавая и варьируя «волну-детектор» до совпадения с волной рассеянных частиц.

Алгоритм прошел успешное тестирование сначала на классическом компьютере, а затем на квантовых процессорах IBM. Особенно важно, что использованный вариационный метод показал устойчивость к шумам в современном квантовом оборудовании, открывая путь к более сложным симуляциям в будущем.

Хотя метод был продемонстрирован для простейшего случая нерелятивистского упругого рассеяния, он может быть расширен для моделирования более сложных процессов, недоступных даже самым мощным классическим суперкомпьютерам при работе с большим количеством частиц.


Новое на сайте

19033Обнаружение древнейшей подтвержденной спиральной галактики с перемычкой COSMOS-74706 19032Микрогравитация на мкс превратила вирусы в эффективных убийц устойчивых бактерий 19031Как древние римляне управляли капиталом, чтобы обеспечить себе пассивный доход и защитить... 19030Миссия Pandora: новый инструмент NASA для калибровки данных телескопа «Джеймс Уэбб» 19029Телескоп Джеймс Уэбб запечатлел «неудавшиеся звезды» в звездном скоплении вестерлунд 2 19028Как «пенопластовые» планеты в системе V1298 Tau стали недостающим звеном в понимании... 19027Возможно ли одновременное глобальное отключение всего мирового интернета? 19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и...