Ssylka

Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы

Исследователи из Школы молекулярной инженерии Прицкера Чикагского университета достигли значительного прогресса в области квантовой физики, продемонстрировав высококачественное запутывание между двумя акустическими волновыми резонаторами. Это достижение выходит далеко за пределы традиционного квантового запутывания, обычно наблюдаемого только между отдельными частицами.
Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы
Изображение носит иллюстративный характер

Под руководством профессора Эндрю Клиланда команда ученых работала с фононами – квантовыми частицами звука, представляющими коллективное движение триллионов атомов. «Фононы – это квантовые частицы звука... Это коллективное движение, возможно, квадриллионов частиц, действующих вместе», – поясняет Хонг Цяо, постдокторант UChicago PME и один из ведущих авторов исследования.

Лаборатория Клиланда имеет богатую историю достижений в области квантовой акустики. Они первыми создали и обнаружили одиночные фононы, а затем впервые запутали два фонона. Признанием их достижений стало назначение Эндрю Клиланда научным сотрудником факультета Ванневара Буша Министерства обороны в 2024 году.

Устройство, разработанное командой, состоит из двух поверхностных акустических резонаторов, каждый из которых размещен на отдельном чипе со своей опорной структурой. Каждый резонатор соединен с собственным сверхпроводящим кубитом, который генерирует и определяет запутанные фононные состояния.

«Многие исследовательские группы продемонстрировали возможность запутывания очень малых объектов вплоть до одного электрона. Но здесь мы демонстрируем запутывание между двумя массивными объектами. Кроме того, наша платформа масштабируема», – отмечает Мин-Хань Чжоу, бывший докторант UChicago PME, ныне работающий в Центре квантовых вычислений Amazon Web Services.

Текущее время жизни резонатора составляет около 300 наносекунд, но исследователи стремятся увеличить его до более чем 100 микросекунд. Такое улучшение открыло бы новые возможности для квантовой связи и распределенных квантовых вычислений.

По словам профессора Клиланда, «наша способность запутывать массивные объекты путем запутывания их коллективного движения раздвигает границы возможного. Область, где существует кот Шрёдингера, становится больше с каждым достижением». Это исследование, опубликованное в Nature Communications, представляет собой важный шаг к созданию крупномасштабных квантовых сетей.


Новое на сайте

19033Обнаружение древнейшей подтвержденной спиральной галактики с перемычкой COSMOS-74706 19032Микрогравитация на мкс превратила вирусы в эффективных убийц устойчивых бактерий 19031Как древние римляне управляли капиталом, чтобы обеспечить себе пассивный доход и защитить... 19030Миссия Pandora: новый инструмент NASA для калибровки данных телескопа «Джеймс Уэбб» 19029Телескоп Джеймс Уэбб запечатлел «неудавшиеся звезды» в звездном скоплении вестерлунд 2 19028Как «пенопластовые» планеты в системе V1298 Tau стали недостающим звеном в понимании... 19027Возможно ли одновременное глобальное отключение всего мирового интернета? 19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и...