Ssylka

Квантовые компьютеры на пути к безошибочности: как два кода лучше, чем один?

Ошибки – неизбежный спутник любых вычислений, и квантовые компьютеры не исключение. Для классических компьютеров существуют проверенные методы борьбы с искажением данных, например, резервное копирование. Однако, в квантовом мире, где действуют иные законы, эти методы неприменимы напрямую. Главная преграда – теорема о запрете клонирования, фундаментальный принцип квантовой механики, гласящий, что неизвестное квантовое состояние невозможно скопировать. Это означает, что привычный способ обнаружения ошибок путем сравнения копий для квантовых компьютеров недоступен.
Квантовые компьютеры на пути к безошибочности: как два кода лучше, чем один?
Изображение носит иллюстративный характер

Несмотря на это, квантовая физика, вдохновленная классической информатикой, предлагает свой путь к решению проблемы. Он заключается в распределении квантовой информации между несколькими запутанными квантовыми битами, или кубитами. Информация, таким образом, хранится избыточно, что позволяет выявлять и исправлять ошибки. Этот подход реализуется с помощью так называемых кодов квантовой коррекции ошибок.

Еще в 2022 году исследовательская группа под руководством профессора Томаса Монца из Института экспериментальной физики Университета Инсбрука и профессора Маркуса Мюллера из Института квантовой информации Рейнско-Вестфальского технического университета Ахена и Института имени Петера Грюнберга Исследовательского центра Юлих, продемонстрировала универсальный набор операций над отказоустойчивыми кубитами. Ученые показали, как программировать алгоритм на квантовом компьютере с эффективной коррекцией ошибок.

Тем не менее, использование только одного кода квантовой коррекции ошибок не лишено сложностей. Разные коды обладают разными характеристиками и трудностями в реализации. Существует теорема, утверждающая, что ни один отдельно взятый код не может одновременно легко реализовывать все необходимые квантовые логические операции для произвольно программируемых вычислений и при этом быть полностью защищенным от ошибок. Иными словами, реализация всех ключевых квантовых вентилей становится крайне затруднительной, если опираться лишь на один метод коррекции.

Чтобы обойти ограничения, связанные с использованием единственного кода, исследовательская группа Маркуса Мюллера разработала новаторский метод. Суть его заключается в том, чтобы квантовый компьютер мог переключаться между двумя различными кодами коррекции ошибок, причем делать это отказоустойчивым образом.

Преимущество такого переключения очевидно. Когда возникает необходимость в выполнении логической операции, которая сложно реализуется в рамках первого кода, квантовый компьютер может временно перейти ко второму коду, где эта операция выполняется более эффективно. Такая гибкость в выборе кодов существенно упрощает реализацию всего необходимого набора квантовых вентилей, открывая путь к созданию универсальных квантовых компьютеров.

Фридерике Бутт, докторант из исследовательской группы Маркуса Мюллера, разработала квантовые схемы для экспериментальной проверки этого метода. В тесном сотрудничестве с группой Томаса Монца в Инсбруке Фридерике Бутт реализовала эти схемы на практике. Иван Погорелов, аспирант из Инсбрукской исследовательской группы, подчеркивает значимость достижения: впервые реализован универсальный набор квантовых вентилей с использованием двух комбинированных кодов коррекции ошибок на ионном квантовом компьютере. Томас Монц отмечает, что плодотворное сотрудничество с командой Маркуса Мюллера началось еще во времена его обучения в докторантуре в Университете Инсбрука.

Результаты этого прорывного исследования были опубликованы в журнале Nature Physics в 2025 году. Статья под названием "Experimental fault-tolerant code switching" (Экспериментальное отказоустойчивое переключение кодов), опубликованная в Nature Physics (2025), доступна по DOI: 10.1038/s41567-024-02727-2, а также в виде препринта на arXiv под DOI: 10.48550/arxiv.2403.13732. Эти результаты, представленные Университетом Инсбрука и цитируемые 24 января 2025 года, описывают значительный шаг вперед на пути к созданию надежных и мощных квантовых компьютеров.


Новое на сайте

16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над... 16928Может ли искусство напрямую очищать экосистемы от вредителей? 16927Вирусное наследие в геноме человека оказалось ключевым регулятором генов