Ssylka

Квантовые компьютеры на пути к безошибочности: как два кода лучше, чем один?

Ошибки – неизбежный спутник любых вычислений, и квантовые компьютеры не исключение. Для классических компьютеров существуют проверенные методы борьбы с искажением данных, например, резервное копирование. Однако, в квантовом мире, где действуют иные законы, эти методы неприменимы напрямую. Главная преграда – теорема о запрете клонирования, фундаментальный принцип квантовой механики, гласящий, что неизвестное квантовое состояние невозможно скопировать. Это означает, что привычный способ обнаружения ошибок путем сравнения копий для квантовых компьютеров недоступен.
Квантовые компьютеры на пути к безошибочности: как два кода лучше, чем один?
Изображение носит иллюстративный характер

Несмотря на это, квантовая физика, вдохновленная классической информатикой, предлагает свой путь к решению проблемы. Он заключается в распределении квантовой информации между несколькими запутанными квантовыми битами, или кубитами. Информация, таким образом, хранится избыточно, что позволяет выявлять и исправлять ошибки. Этот подход реализуется с помощью так называемых кодов квантовой коррекции ошибок.

Еще в 2022 году исследовательская группа под руководством профессора Томаса Монца из Института экспериментальной физики Университета Инсбрука и профессора Маркуса Мюллера из Института квантовой информации Рейнско-Вестфальского технического университета Ахена и Института имени Петера Грюнберга Исследовательского центра Юлих, продемонстрировала универсальный набор операций над отказоустойчивыми кубитами. Ученые показали, как программировать алгоритм на квантовом компьютере с эффективной коррекцией ошибок.

Тем не менее, использование только одного кода квантовой коррекции ошибок не лишено сложностей. Разные коды обладают разными характеристиками и трудностями в реализации. Существует теорема, утверждающая, что ни один отдельно взятый код не может одновременно легко реализовывать все необходимые квантовые логические операции для произвольно программируемых вычислений и при этом быть полностью защищенным от ошибок. Иными словами, реализация всех ключевых квантовых вентилей становится крайне затруднительной, если опираться лишь на один метод коррекции.

Чтобы обойти ограничения, связанные с использованием единственного кода, исследовательская группа Маркуса Мюллера разработала новаторский метод. Суть его заключается в том, чтобы квантовый компьютер мог переключаться между двумя различными кодами коррекции ошибок, причем делать это отказоустойчивым образом.

Преимущество такого переключения очевидно. Когда возникает необходимость в выполнении логической операции, которая сложно реализуется в рамках первого кода, квантовый компьютер может временно перейти ко второму коду, где эта операция выполняется более эффективно. Такая гибкость в выборе кодов существенно упрощает реализацию всего необходимого набора квантовых вентилей, открывая путь к созданию универсальных квантовых компьютеров.

Фридерике Бутт, докторант из исследовательской группы Маркуса Мюллера, разработала квантовые схемы для экспериментальной проверки этого метода. В тесном сотрудничестве с группой Томаса Монца в Инсбруке Фридерике Бутт реализовала эти схемы на практике. Иван Погорелов, аспирант из Инсбрукской исследовательской группы, подчеркивает значимость достижения: впервые реализован универсальный набор квантовых вентилей с использованием двух комбинированных кодов коррекции ошибок на ионном квантовом компьютере. Томас Монц отмечает, что плодотворное сотрудничество с командой Маркуса Мюллера началось еще во времена его обучения в докторантуре в Университете Инсбрука.

Результаты этого прорывного исследования были опубликованы в журнале Nature Physics в 2025 году. Статья под названием "Experimental fault-tolerant code switching" (Экспериментальное отказоустойчивое переключение кодов), опубликованная в Nature Physics (2025), доступна по DOI: 10.1038/s41567-024-02727-2, а также в виде препринта на arXiv под DOI: 10.48550/arxiv.2403.13732. Эти результаты, представленные Университетом Инсбрука и цитируемые 24 января 2025 года, описывают значительный шаг вперед на пути к созданию надежных и мощных квантовых компьютеров.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...