Ssylka

Квантовые датчики достигли беспрецедентной точности в обнаружении смещений света

Исследователи из Университета Портсмута совершили прорыв в области квантовой сенсорики, разработав метод, позволяющий с невероятной точностью обнаруживать мельчайшие смещения света на наноуровне. Результаты исследования, опубликованные в престижном журнале Physical Review A и включенные в раздел «Рекомендации редакторов», открывают новые возможности для высокоточных измерений и характеристики материалов.
Квантовые датчики достигли беспрецедентной точности в обнаружении смещений света
Изображение носит иллюстративный характер

Инновационная технология основана на использовании квантово-запутанных фотонов — безмассовых частиц света. В процессе эксперимента фотоны проходят через специальное устройство — светоделитель, который создает интерференционные картины. Анализируя эти картины, ученые могут обнаруживать крошечные начальные пространственные смещения с точностью, недостижимой для традиционных методов измерения.

Особенность разработанного метода заключается в том, что он сохраняет высокую точность независимо от размера смещения. Более того, даже простые «интегральные детекторы» могут эффективно оценивать малые смещения, что делает технологию более доступной для практического применения.

Профессор Винченцо Тамма, главный исследователь и директор Центра квантовой науки и технологий Университета Портсмута (QSTH), возглавил эту работу. «Наш метод позволяет достичь максимально возможной в природе точности в реальных сценариях», — отмечает профессор Тамма.

Центр квантовой науки и технологий Университета Портсмута сотрудничает с различными академическими учреждениями, а также с такими компаниями, как IBM и Xairos — организацией, специализирующейся на космических квантовых технологиях. Эти партнерства способствуют быстрому развитию и внедрению новых квантовых технологий.

Значимость данного исследования трудно переоценить. Разработанная технология делает возможным проведение высокоточных квантовых измерений без использования дорогостоящего и сложного оборудования, что приближает квантовую сенсорику к массовому применению. Уже сейчас экспериментальные группы по всему миру сотрудничают с командой профессора Таммы для тестирования этих методов.

Научный контекст исследования основан на фундаментальных квантовых принципах: суперпозиции, запутанности и квантовой интерференции. QSTH связывает квантовую науку с искусственным интеллектом, биомедицинской инженерией, медициной, вычислительной техникой, экологическими науками и гравитацией. Сотрудничество исследователей охватывает четыре континента.

Потенциальные применения новой технологии включают характеристику двулучепреломляющих материалов и высокоточные измерения вращений. Ожидается, что экспериментальная реализация метода произойдет в ближайшем будущем, что может революционизировать многие аспекты повседневной жизни, промышленности и науки.


Новое на сайте

16956Почему гигантская акула-молот предпочитает охотиться на других акул? 16955Волнообразные соседи солнца: тайные колыбели звёзд 16954Как свободный выбор приложений сотрудниками создает скрытые угрозы для бизнеса? 16953Обречена ли вселенная на коллапс через 10 миллиардов лет? 16952Новая забастовка усугубляет репутационный кризис Boeing 16951Хорнелундское золото: неразгаданная тайна викингов 16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях