Ssylka

Прорыв в сверхточной лазерной печати

Метод прямой лазерной печати (DLW) использует сфокусированный лазер для селективной полимеризации материалов с трехмерной наноточностью, реализуя мультифотонную полимеризацию. Проблема традиционных подходов заключается в нежелательной экспозиции смежных областей.
Прорыв в сверхточной лазерной печати
Изображение носит иллюстративный характер

Оптимизированный метод включает уникальную оптическую схему с двойным лазерным лучом и специально разработанную фотополимерную систему, что позволяет минимизировать побочные реакции. При скорости печати 100 мкм/с достигается поперечное разрешение 100 нм, а при 1000 мкм/с – 120 нм.

Новый подход описан в журнале Optics Letters и представляет возможность изготовления микролинз, фотонных кристаллов, микросистем оптики, метаматериалов и других компонентов.

Ключевую роль в разработке метода сыграл Qiulan Liu из Zhejiang Lab и Zhejiang University в Китае, чьи исследования открывают перспективы для создания оптических волноводных устройств для VR и AR дисплеев.

Применяемая фотополимерная система основана на мономере PETA, дополненном Bis(2,2,6,6-тетраметил-4-пиперидил-1-оксиль) себацетатом (BTPOS), который действует как радикальный кватчер, снижая перекрестное сшивание при печати тонких линий.

Оптическая система использует два лазерных источника: 525-нм фемтосекундный лазер для возбуждения и 532-нм пикосекундный лазер для ингибирования, с пикосекундной задержкой в 2700 пс, компенсирующей разницу оптических путей и предотвращающей нежелательную полимеризацию.

Для точного контроля излучения применяется пространственный модулятор света (SLM) с коррекцией с помощью полиномов Зернике, что обеспечивает стабильное выравнивание фокуса, управление мощностью лазера и снижение эффекта памяти между лучами.

Демонстрационные эксперименты по созданию миниатюрных 3D-структур «woodpile» показали возможность формирования поперечных межстержневых расстояний от 225 нм до 300 нм и минимального аксиального периода 318 нм, что близко к дифракционному пределу в 320 нм.

Дальнейшие исследования направлены на увеличение скорости печати до 10 мм/с с перспективой достижения 100 мм/с, а также на усовершенствование фотополимерной системы для повышения стабильности и практичности метода в производстве сложных оптических устройств следующего поколения.


Новое на сайте

18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года? 18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас превосходства 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней...