Ssylka

Прорыв в сверхточной лазерной печати

Метод прямой лазерной печати (DLW) использует сфокусированный лазер для селективной полимеризации материалов с трехмерной наноточностью, реализуя мультифотонную полимеризацию. Проблема традиционных подходов заключается в нежелательной экспозиции смежных областей.
Прорыв в сверхточной лазерной печати
Изображение носит иллюстративный характер

Оптимизированный метод включает уникальную оптическую схему с двойным лазерным лучом и специально разработанную фотополимерную систему, что позволяет минимизировать побочные реакции. При скорости печати 100 мкм/с достигается поперечное разрешение 100 нм, а при 1000 мкм/с – 120 нм.

Новый подход описан в журнале Optics Letters и представляет возможность изготовления микролинз, фотонных кристаллов, микросистем оптики, метаматериалов и других компонентов.

Ключевую роль в разработке метода сыграл Qiulan Liu из Zhejiang Lab и Zhejiang University в Китае, чьи исследования открывают перспективы для создания оптических волноводных устройств для VR и AR дисплеев.

Применяемая фотополимерная система основана на мономере PETA, дополненном Bis(2,2,6,6-тетраметил-4-пиперидил-1-оксиль) себацетатом (BTPOS), который действует как радикальный кватчер, снижая перекрестное сшивание при печати тонких линий.

Оптическая система использует два лазерных источника: 525-нм фемтосекундный лазер для возбуждения и 532-нм пикосекундный лазер для ингибирования, с пикосекундной задержкой в 2700 пс, компенсирующей разницу оптических путей и предотвращающей нежелательную полимеризацию.

Для точного контроля излучения применяется пространственный модулятор света (SLM) с коррекцией с помощью полиномов Зернике, что обеспечивает стабильное выравнивание фокуса, управление мощностью лазера и снижение эффекта памяти между лучами.

Демонстрационные эксперименты по созданию миниатюрных 3D-структур «woodpile» показали возможность формирования поперечных межстержневых расстояний от 225 нм до 300 нм и минимального аксиального периода 318 нм, что близко к дифракционному пределу в 320 нм.

Дальнейшие исследования направлены на увеличение скорости печати до 10 мм/с с перспективой достижения 100 мм/с, а также на усовершенствование фотополимерной системы для повышения стабильности и практичности метода в производстве сложных оптических устройств следующего поколения.


Новое на сайте

19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам