Прорыв в предсказании фазовых переходов: машинное обучение объединяется с физикой

Исследователи Университета Байройта совершили значительный прорыв в области прогнозирования фазовых переходов между жидким и газообразным состояниями вещества. Объединив статистическую физику с машинным обучением, они разработали метод, позволяющий точно определять состояние вещества при заданных условиях.
Прорыв в предсказании фазовых переходов: машинное обучение объединяется с физикой
Изображение носит иллюстративный характер

Фазовые переходы между жидкостью и газом играют фундаментальную роль как в природных явлениях, так и в промышленных процессах. На примере стакана воды можно наблюдать, как молекулы постоянно переходят из жидкой фазы в газообразную путем испарения и обратно через конденсацию. При определенной критической температуре граница между жидкостью и газом исчезает, образуя сверхкритическую жидкость – явление, широко применяемое в промышленных процессах разделения, очистки и производства.

История изучения фазовых переходов уходит корнями в XIX век, когда Томас Эндрюс экспериментально обнаружил критическую точку. Позже Йоханнес Дидерик ван дер Ваальс, удостоенный Нобелевской премии в 1910 году, предложил теоретическую модель фазового разделения, которая, несмотря на использование грубых приближений, до сих пор остается в учебниках.

Новый метод разработан командой ученых, в которую вошли доктор Флориан Заммюллер и профессор Маттиас Шмидт из Университета Байройта, а также почетный профессор Роберт Эванс – основоположник классической теории функционала плотности. Исследователи объединили функциональные соотношения, сформулированные Эвансом в 1979 году, с возможностями нейронных сетей.

Инновационный подход позволяет преодолеть ограничения традиционных методов. По словам профессора Шмидта, машинное обучение значительно повышает точность прогнозов, а предположения ван дер Ваальса теперь могут быть количественно проверены и в значительной степени подтверждены.

Доктор Заммюллер подчеркивает важность теоретической физики в контроле предсказаний искусственного интеллекта: статистическая механика жидкостей предоставляет строгие уравнения для проверки качества прогнозов ИИ.

Новая методология открывает широкие перспективы применения в различных областях, включая изучение смачивания поверхностей, капиллярного поведения в порах и явлений расслоения. Гибридный подход, сочетающий машинное обучение и теорию жидкостей, создает основу для гибкого моделирования веществ и оптимизации промышленных процессов.


Новое на сайте

19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии?
Ссылка