Как гибкость молекул определяет формирование супрамолекулярных сетей?

Исследователи из Федеральной политехнической школы Лозанны (EPFL) совершили важное открытие в области формирования молекулярных сетей. Ученые установили, что ключевым фактором в образовании супрамолекулярных структур является не сила химических связей, а гибкость молекулярных интерфейсов.
Как гибкость молекул определяет формирование супрамолекулярных сетей?
Изображение носит иллюстративный характер

В природе супрамолекулярные сети играют фундаментальную роль в функционировании биологических систем. Яркими примерами служат белок клатрин, который формирует шестиугольные сети для обеспечения эндоцитоза, и белок TRIM5a, создающий защитную решетку против ВИЧ. Даже пчелиные соты демонстрируют аналогичный принцип гексагональной организации на макроуровне.

Группа ученых под руководством Маартье Бастингс из Лаборатории программируемых биоматериалов (PBL) и Георга Фантнера из Лаборатории био- и наноинструментов (LBNI) использовала наноинженерные нити ДНК в форме трехлучевых звезд для изучения механизмов формирования сетей. Исследователи варьировали длину и последовательность нуклеотидов в «руках» этих структур.

С помощью высокоскоростной атомно-силовой микроскопии ученые наблюдали, как короткие жесткие «руки» ДНК-молекул успешно организовывались в стабильные шестиугольные сети. Напротив, длинные гибкие «руки» расходились слишком широко, препятствуя формированию крупных сетевых структур.

Компьютерное моделирование подтвердило, что молекулы с короткими «руками» примерно в четыре раза чаще принимали параллельную конфигурацию, необходимую для образования стабильных связей. Важно отметить, что даже глобально гибкие молекулы могут формировать сети при наличии локальной жесткости в области интерфейса.

Это открытие имеет широкие практические применения. В медицине оно может помочь в разработке методов предотвращения образования амилоидных бляшек при болезни Альцгеймера. В области спинтроники знание принципов самосборки может использоваться для создания наноразмерных сетей в передовой электронике.

Исследование, опубликованное в журнале Nature Chemistry, демонстрирует, как ДНК-нанотехнологии позволяют точно контролировать молекулярные свойства на атомном уровне, выходя за рамки традиционной геномной функции ДНК.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка