Ssylka

Как гибкость молекул определяет формирование супрамолекулярных сетей?

Исследователи из Федеральной политехнической школы Лозанны (EPFL) совершили важное открытие в области формирования молекулярных сетей. Ученые установили, что ключевым фактором в образовании супрамолекулярных структур является не сила химических связей, а гибкость молекулярных интерфейсов.
Как гибкость молекул определяет формирование супрамолекулярных сетей?
Изображение носит иллюстративный характер

В природе супрамолекулярные сети играют фундаментальную роль в функционировании биологических систем. Яркими примерами служат белок клатрин, который формирует шестиугольные сети для обеспечения эндоцитоза, и белок TRIM5a, создающий защитную решетку против ВИЧ. Даже пчелиные соты демонстрируют аналогичный принцип гексагональной организации на макроуровне.

Группа ученых под руководством Маартье Бастингс из Лаборатории программируемых биоматериалов (PBL) и Георга Фантнера из Лаборатории био- и наноинструментов (LBNI) использовала наноинженерные нити ДНК в форме трехлучевых звезд для изучения механизмов формирования сетей. Исследователи варьировали длину и последовательность нуклеотидов в «руках» этих структур.

С помощью высокоскоростной атомно-силовой микроскопии ученые наблюдали, как короткие жесткие «руки» ДНК-молекул успешно организовывались в стабильные шестиугольные сети. Напротив, длинные гибкие «руки» расходились слишком широко, препятствуя формированию крупных сетевых структур.

Компьютерное моделирование подтвердило, что молекулы с короткими «руками» примерно в четыре раза чаще принимали параллельную конфигурацию, необходимую для образования стабильных связей. Важно отметить, что даже глобально гибкие молекулы могут формировать сети при наличии локальной жесткости в области интерфейса.

Это открытие имеет широкие практические применения. В медицине оно может помочь в разработке методов предотвращения образования амилоидных бляшек при болезни Альцгеймера. В области спинтроники знание принципов самосборки может использоваться для создания наноразмерных сетей в передовой электронике.

Исследование, опубликованное в журнале Nature Chemistry, демонстрирует, как ДНК-нанотехнологии позволяют точно контролировать молекулярные свойства на атомном уровне, выходя за рамки традиционной геномной функции ДНК.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?