Платиновые электроды, известные своей долговечностью и стабильностью, неожиданно подвергаются быстрой коррозии при отрицательной поляризации в электролитической среде, например, в соленой воде. Этот парадоксальный эффект создает серьезные проблемы для устройств, таких как электролизеры и электрохимические датчики, в работе которых платина играет ключевую роль. Обычно отрицательная поляризация защищает большинство металлов от коррозии, однако платина в этом отношении является исключением, что вызывает обоснованное беспокойство в научной среде и индустрии.
Электролизеры и электрохимические устройства широко используют платиновые электроды, работающие в условиях отрицательной поляризации и погруженные в электролиты. Платина, несмотря на свою высокую стоимость, традиционно считалась эталоном прочности и химической стойкости. «Быть достаточно стабильным не означает, что металл не деградирует совсем,» – подчеркивает Димостенис Сокарас, ведущий научный сотрудник SLAC и руководитель исследовательской группы SLAC. Профессор катализа и химии поверхности Лейденского университета и руководитель исследовательской группы Лейдена, Марк Копер, добавляет: «Если вы возьмете кусок платины и приложите очень отрицательный потенциал, вы можете растворить вашу платину за считанные минуты.»
До недавнего времени существовало две основные теории, пытавшиеся объяснить механизм коррозии платины в таких условиях. Первая теория предполагала, что ионы натрия из электролита проникают в кристаллическую решетку платины и формируют платиниды – соединения платины с положительно заряженными ионами натрия. Считалось, что эти платиниды затем отслаиваются, вызывая коррозию. Вторая теория выдвигала гипотезу о совместном действии ионов натрия и ионов водорода (протонов) в образовании гидридов платины, которые, по мнению исследователей, также могли приводить к коррозии.
Для углубленного изучения механизма этого явления, ученые из Лейденского университета и Национальной лаборатории SLAC Министерства энергетики США объединили свои усилия. Результаты их совместной работы были опубликованы в авторитетном журнале Nature Materials. Основной целью исследования стало непосредственное наблюдение за процессом коррозии платины в действии, в условиях ее погружения в электролит и одновременного производства водорода.
Для достижения этой цели исследователи применили метод рентгеновской спектроскопии высокого энергетического разрешения на базе Стэнфордского источника синхротронного излучения (SSRL) в SLAC. Специалисты SLAC разработали этот метод рентгеновской спектроскопии, чтобы иметь возможность проникать сквозь электролит, эффективно отфильтровывать помехи и концентрироваться на минимальных изменениях, происходящих на поверхности платинового электрода непосредственно в процессе его работы, то есть in operando. Том Херсбах, научный сотрудник SLAC, отметил: «Рентгеновская абсорбционная спектроскопия высокого энергетического разрешения была для нас единственным методом, который, как мы считали, мог справиться с такими сложными экспериментальными условиями.»
Для обеспечения корректности рентгеновских измерений и устранения помех, создаваемых пузырьками водорода, которые неизбежно образуются на электроде в процессе электролиза, была разработана специальная помпа и «проточная ячейка». Это инновационное оборудование позволило непрерывно удалять водородные пузырьки, обеспечивая четкость и точность получаемых данных.
В результате проведенных экспериментов исследовательская группа впервые в истории смогла осуществить in operando наблюдения за активной коррозией платины и зарегистрировать рентгеновские спектры с поверхности отрицательно поляризованного электрода. Анализ полученных данных и их сопоставление с результатами компьютерного моделирования позволили ученым однозначно установить, что именно гидриды платины, а не платиниды, являются истинной причиной коррозии.
В процессе исследования были созданы компьютерные модели гидридов и платинидов платины, позволяющие симулировать ожидаемые рентгеновские спектры этих соединений. Сравнение этих теоретических спектров с экспериментально полученными данными окончательно подтвердило гидриды платины в качестве виновников коррозии.
Понимание истинных причин коррозии платины открывает путь к разработке эффективных решений для ее предотвращения в электролизерах и других электрохимических устройствах. Это, в свою очередь, может привести к снижению стоимости производства экологически чистого водорода и повышению надежности электрохимических датчиков.
Димостенис Сокарас подчеркивает: «Продвигая границы рентгеновской науки, SSRL разработал методы in operando, которые в сочетании с современными суперкомпьютерами позволяют нам теперь решать научные вопросы, стоящие десятилетиями.» Марк Копер также отметил важность коллективного подхода в науке: «Это показывает, насколько важно в науке объединять большой объем экспертных знаний.»
Таким образом, данное исследование, проведенное учеными Лейденского университета и Национальной лаборатории SLAC, не только раскрыло фундаментальные механизмы коррозии платины, но и заложило основу для создания более долговечных и эффективных электрохимических технологий, имеющих решающее значение для развития экологически чистой энергетики и различных областей химического анализа.
Изображение носит иллюстративный характер
Электролизеры и электрохимические устройства широко используют платиновые электроды, работающие в условиях отрицательной поляризации и погруженные в электролиты. Платина, несмотря на свою высокую стоимость, традиционно считалась эталоном прочности и химической стойкости. «Быть достаточно стабильным не означает, что металл не деградирует совсем,» – подчеркивает Димостенис Сокарас, ведущий научный сотрудник SLAC и руководитель исследовательской группы SLAC. Профессор катализа и химии поверхности Лейденского университета и руководитель исследовательской группы Лейдена, Марк Копер, добавляет: «Если вы возьмете кусок платины и приложите очень отрицательный потенциал, вы можете растворить вашу платину за считанные минуты.»
До недавнего времени существовало две основные теории, пытавшиеся объяснить механизм коррозии платины в таких условиях. Первая теория предполагала, что ионы натрия из электролита проникают в кристаллическую решетку платины и формируют платиниды – соединения платины с положительно заряженными ионами натрия. Считалось, что эти платиниды затем отслаиваются, вызывая коррозию. Вторая теория выдвигала гипотезу о совместном действии ионов натрия и ионов водорода (протонов) в образовании гидридов платины, которые, по мнению исследователей, также могли приводить к коррозии.
Для углубленного изучения механизма этого явления, ученые из Лейденского университета и Национальной лаборатории SLAC Министерства энергетики США объединили свои усилия. Результаты их совместной работы были опубликованы в авторитетном журнале Nature Materials. Основной целью исследования стало непосредственное наблюдение за процессом коррозии платины в действии, в условиях ее погружения в электролит и одновременного производства водорода.
Для достижения этой цели исследователи применили метод рентгеновской спектроскопии высокого энергетического разрешения на базе Стэнфордского источника синхротронного излучения (SSRL) в SLAC. Специалисты SLAC разработали этот метод рентгеновской спектроскопии, чтобы иметь возможность проникать сквозь электролит, эффективно отфильтровывать помехи и концентрироваться на минимальных изменениях, происходящих на поверхности платинового электрода непосредственно в процессе его работы, то есть in operando. Том Херсбах, научный сотрудник SLAC, отметил: «Рентгеновская абсорбционная спектроскопия высокого энергетического разрешения была для нас единственным методом, который, как мы считали, мог справиться с такими сложными экспериментальными условиями.»
Для обеспечения корректности рентгеновских измерений и устранения помех, создаваемых пузырьками водорода, которые неизбежно образуются на электроде в процессе электролиза, была разработана специальная помпа и «проточная ячейка». Это инновационное оборудование позволило непрерывно удалять водородные пузырьки, обеспечивая четкость и точность получаемых данных.
В результате проведенных экспериментов исследовательская группа впервые в истории смогла осуществить in operando наблюдения за активной коррозией платины и зарегистрировать рентгеновские спектры с поверхности отрицательно поляризованного электрода. Анализ полученных данных и их сопоставление с результатами компьютерного моделирования позволили ученым однозначно установить, что именно гидриды платины, а не платиниды, являются истинной причиной коррозии.
В процессе исследования были созданы компьютерные модели гидридов и платинидов платины, позволяющие симулировать ожидаемые рентгеновские спектры этих соединений. Сравнение этих теоретических спектров с экспериментально полученными данными окончательно подтвердило гидриды платины в качестве виновников коррозии.
Понимание истинных причин коррозии платины открывает путь к разработке эффективных решений для ее предотвращения в электролизерах и других электрохимических устройствах. Это, в свою очередь, может привести к снижению стоимости производства экологически чистого водорода и повышению надежности электрохимических датчиков.
Димостенис Сокарас подчеркивает: «Продвигая границы рентгеновской науки, SSRL разработал методы in operando, которые в сочетании с современными суперкомпьютерами позволяют нам теперь решать научные вопросы, стоящие десятилетиями.» Марк Копер также отметил важность коллективного подхода в науке: «Это показывает, насколько важно в науке объединять большой объем экспертных знаний.»
Таким образом, данное исследование, проведенное учеными Лейденского университета и Национальной лаборатории SLAC, не только раскрыло фундаментальные механизмы коррозии платины, но и заложило основу для создания более долговечных и эффективных электрохимических технологий, имеющих решающее значение для развития экологически чистой энергетики и различных областей химического анализа.