Ssylka

Почему литий-танталат совершает прорыв в создании частотных гребенок?

Частотные гребенки, играющие роль своеобразных «линеек» для измерения света, открывают двери к точным измерениям в различных областях – от телекоммуникаций до астрофизики и экологического мониторинга. Однако, традиционные подходы к их созданию – электрооптические гребенки, разработанные еще в 1993 году, фемтосекундные лазеры и керр-солитонные микрогребенки – имеют свои ограничения, связанные с высоким энергопотреблением, сложной настройкой и недостаточной стабильностью, что затрудняет их применение в полевых условиях.
Почему литий-танталат совершает прорыв в создании частотных гребенок?
Изображение носит иллюстративный характер

Новый подход, основанный на использовании литий-танталата, позволил создать электрооптическую частотную гребенку, значительно превосходящую предыдущие разработки. Эта технология преодолевает ключевые недостатки аналогов и открывает новые горизонты для применения в различных областях.

В основе прорыва лежит переход от ранее использовавшегося ниобата лития к танталату лития. Танталат лития обладает на 17 порядков меньшим внутренним двулучепреломлением, что значительно повышает эффективность устройства. Это позволило команде исследователей, возглавляемой профессором Тобиасом Дж. Киппенбергом, создать устройство, демонстрирующее беспрецедентную ширину спектрального покрытия – 450 нм и более 2000 гребенчатых линий.

Уникальность нового устройства заключается не только в используемом материале, но и в его архитектуре, получившей название «интегрированная тройная резонансная». Эта конструкция сочетает в себе оптические и микроволновые цепи, что обеспечивает оптимизированное взаимодействие между различными частотными диапазонами.

Интеграция распределенного копланарного волноводного резонатора позволила значительно повысить эффективность микроволнового излучения и снизить энергопотребление устройства в 20 раз по сравнению с предыдущими моделями. Кроме того, использование простого, свободно работающего лазерного диода с распределенной обратной связью устраняет необходимость в сложных механизмах настройки, делая устройство более удобным и надежным.

Размеры нового устройства поражают своей компактностью – всего 1x1 см², и оно стабильно работает на 90% свободного спектрального диапазона. Разработка велась в нескольких научных центрах, включая EPFL (Федеральная политехническая школа Лозанны), Горную школу Колорадо и Китайскую академию наук. Образцы изготавливались в Центре микро- и нанотехнологий EPFL и в Институте физики, а пластины LTOI (литий-танталат на изоляторе) производились компаниями Shanghai Novel Si Integration Technology (NSIT) и SIMIT-CAS.

Новая электрооптическая гребенка, представленная в статье, опубликованной в журнале Nature в 2025 году под заголовком «Ультраширокополосная интегрированная электрооптическая частотная гребенка из танталата лития» (DOI: 10.1038/s41586-024-08354-4; URL: ), является результатом совместной работы исследователей из разных уголков мира и демонстрирует потенциал интеграции микроволновой и фотонной инженерии.

Благодаря своей компактности, эффективности и стабильности, новое устройство открывает возможности для применения в различных областях, включая робототехнику (точное лазерное дальномерие) и экологический мониторинг (газочувствительные датчики).

Этот прорыв подчеркивает важность материаловедения и совместного проектирования в фотонике. Использование танталата лития и интеграция различных компонентов на одном чипе позволили создать устройство, которое значительно превосходит предыдущие поколения частотных гребенок по своим характеристикам и потенциалу.

Снижение энергопотребления и упрощение конструкции делает новую гребенку более доступной и удобной для широкого круга пользователей. В результате, она может ускорить внедрение частотных гребенок в различных сферах, где точность измерений и надежность работы играют ключевую роль.

Таким образом, разработка компактной, эффективной и надежной электрооптической частотной гребенки из танталата лития – это важный шаг вперед в развитии фотометрии, открывающий новые возможности для точных измерений и контроля света в самых разных областях науки и техники.


Новое на сайте

18762Почему критическая уязвимость шестилетней давности в роутерах Sierra Wireless угрожает... 18760Почему случайные травмы превращаются в вечные рисунки на теле? 18759Почему Apple экстренно закрывает уязвимости, используемые для атак на конкретных людей? 18758Какие открытия от Марса до темной материи меняют научную картину мира? 18757Как ультрагорячая супер-Земля TOI-561 b сумела сохранить плотную атмосферу в... 18756Третий межзвездный странник 3I/ATLAS меняет цвет и проявляет аномальную активность 18754Раскопки виселицы XVI века и массовых захоронений казненных мятежников в Гренобле 18753Почему скрытая инфекция убила гигантского крокодила Кассиуса после 40 лет жизни в неволе? 18752Первая церемония Global Space Awards в Лондоне определила лидеров космической индустрии 18751Как новые фишинговые инструменты BlackForce, GhostFrame и гибридные атаки 2025 года... 18750Колоссальная «зеленая стена» Китая: полувековая битва с наступлением пустынь 18749Как превратить браузер в надежный центр управления безопасностью GenAI и предотвратить... 18748Команда React выпустила экстренные патчи для устранения критических уязвимостей в Server...