Оценка LLM-систем выходит за рамки тестирования самих языковых моделей. Системы LLM включают в себя дополнительные компоненты, такие как вызовы функций и системы поиска, требующие более детального анализа. Оценка системы LLM предполагает оценку каждого компонента, а не только финального результата. Различают два типа оценок: автономная (офлайн) и в реальном времени.
Для автономной оценки создаются тестовые кейсы, каждый из которых содержит входные данные, фактические и ожидаемые выходные данные, контекст извлечения и контекст. Набор таких кейсов формирует оценочный датасет. Метрики оценки LLM должны использовать подход LLM-as-a-judge, то есть когда LLM используется для оценки результатов. Метрики бывают эталонные и безэталонные. Эталонные метрики обеспечивают более точные результаты, но требуют предварительно подготовленных идеальных ответов. Бенчмарки системы LLM являются кастомными и состоят из набора данных для оценки и метрик.
Оценка в реальном времени позволяет анализировать ответы системы в рабочей среде. Это особенно важно для выявления слабых мест, не охваченных тестовыми кейсами для автономной оценки. В реальном времени используются безэталонные метрики, которые позволяют отбирать проблемные ответы для последующей оценки и добавления в датасет для автономной оценки.
Примерами использования являются чат-боты QA и системы Text-to-SQL. Для чат-ботов QA важны метрики корректности ответа и полноты контекста. Для систем Text-to-SQL — метрики корректности SQL-запроса и полноты контекста, необходимого для составления запроса. Оба этих варианта используют RAG архитектуру.
Изображение носит иллюстративный характер
Для автономной оценки создаются тестовые кейсы, каждый из которых содержит входные данные, фактические и ожидаемые выходные данные, контекст извлечения и контекст. Набор таких кейсов формирует оценочный датасет. Метрики оценки LLM должны использовать подход LLM-as-a-judge, то есть когда LLM используется для оценки результатов. Метрики бывают эталонные и безэталонные. Эталонные метрики обеспечивают более точные результаты, но требуют предварительно подготовленных идеальных ответов. Бенчмарки системы LLM являются кастомными и состоят из набора данных для оценки и метрик.
Оценка в реальном времени позволяет анализировать ответы системы в рабочей среде. Это особенно важно для выявления слабых мест, не охваченных тестовыми кейсами для автономной оценки. В реальном времени используются безэталонные метрики, которые позволяют отбирать проблемные ответы для последующей оценки и добавления в датасет для автономной оценки.
Примерами использования являются чат-боты QA и системы Text-to-SQL. Для чат-ботов QA важны метрики корректности ответа и полноты контекста. Для систем Text-to-SQL — метрики корректности SQL-запроса и полноты контекста, необходимого для составления запроса. Оба этих варианта используют RAG архитектуру.