Ssylka

Как устроен обнаруженный учеными навигационный «тумблер» в мозгу и поможет ли он в диагностике болез

Нейробиолог Дениз Ватансевер из Фуданьского университета в Китае совместно с коллегами опубликовал 4 декабря в журнале Nature Communications результаты исследования, раскрывающего механизмы работы человеческого мозга при ориентации в пространстве. Согласно отчету, опубликованному Live Science, ученым удалось выявить специфическую функциональную организацию, напоминающую «тумблер» или градиент, который переключает режимы работы мозга в зависимости от новизны окружения. В исследовании приняли участие 56 здоровых добровольцев в возрасте от 20 до 37 лет.
Как устроен обнаруженный учеными навигационный «тумблер» в мозгу и поможет ли он в диагностике болез
Изображение носит иллюстративный характер

Для проведения эксперимента использовалась технология функциональной магнитно-резонансной томографии (фМРТ), отслеживающая активность мозга через изменения кровотока, в сочетании с виртуальной реальностью. Участники выполняли задание по навигации в виртуальном мире, представлявшем собой травянистое поле, окруженное горами. Основной задачей испытуемых был поиск шести скрытых предметов, что позволило ученым зафиксировать различия в мозговой активности при исследовании знакомых и незнакомых сред.

Ключевые открытия касаются работы гиппокампа — области мозга в форме морского конька, критически важной для памяти и навигации, насыщенной «клетками места». Исследование показало, что этот регион организован в виде градиента. «Голова» (передняя часть) гиппокампа активируется при нахождении в знакомых, ранее посещенных местах, тогда как «хвост» (задняя часть) реагирует на новые локации. Ранее считалось, что передняя часть отвечает за общие понятия о местоположении, такие как ориентиры, а задняя — за конкретные детали.

Аналогичная градиентная структура была обнаружена и в коре головного мозга — центре высшей нервной деятельности. Здесь активность распределяется в форме конуса: центр коры предпочитает обработку знакомой информации, а по мере движения к внешним краям нарастает предпочтение новизны. Это распределение позволяет мозгу эффективно переключаться между режимами обработки информации в зависимости от внешних условий. Дениз Ватансевер пояснил этот процесс на примере переезда: «Когда вы переезжаете в новый город... Вам приходится исследовать окружающую среду, чтобы привыкнуть к ней».

Анализ нейронных сетей показал, что навигация в разных условиях задействует различные синхронизированные группы клеток. В знакомых зонах активируются сети, связанные с моторным контролем и памятью, что позволяет действовать на основе усвоенного опыта. В новых же местах включаются сети, отвечающие за фокусировку внимания и восприятие, что необходимо для поглощения деталей окружающей обстановки.

Когнитивный нейробиолог Зита Патай из Университетского колледжа Лондона, не участвовавшая в исследовании, отметила важность открытия градиентной структуры. По ее словам, это объясняет противоречивые результаты прошлых лет относительно функций гиппокампа. Другой независимый эксперт, Луи Рену, когнитивный нейробиолог из Университета Восточной Англии, также ознакомился с результатами работы, подтверждающими сложную организацию навигационных систем.

Полученные данные имеют прямое значение для медицины, особенно в контексте деменции и болезни Альцгеймера, где потеря ориентации часто является ранним симптомом. Клетки, расположенные внутри обнаруженных градиентов коры и гиппокампа, относятся к числу областей, поражаемых заболеванием в первую очередь. Установлено, что на ранних стадиях болезни Альцгеймера одинаково уязвимы как передняя, так и задняя части гиппокампа.

Понимание кодирования навигации открывает путь к выявлению измеримых признаков ранней стадии деменции, так как зоны мозга, ответственные за ориентацию, ключевым образом связаны с эпизодической памятью — воспоминаниями о конкретных жизненных событиях. Зита Патай подчеркнула значимость этих функций для качества жизни пациентов: «Если вы хотите повысить способность людей к независимости, вы хотите, чтобы они могли посещать новые места и понимать новые вещи».

Данное исследование дополняет ряд недавних открытий в области картирования мозга, упомянутых в контексте работы. Среди них — создание самой детальной карты человеческого мозга, содержащей 3300 типов клеток, разработка сверхдетальной карты клеток, поддерживающих бодрствование, а также гипотеза о том, что мозг может «перемещаться» между связанными идеями так же, как он перемещается из одной физической локации в другую.


Новое на сайте

18784Как устроен обнаруженный учеными навигационный «тумблер» в мозгу и поможет ли он в... 18783Что скрывали под водой руины солнечного храма фараона ниусера и обнаруженный там... 18782Что рассказала астрономам самая далекая сверхновая GRB 250314A? 18781Как злоумышленники захватывают облака AWS для майнинга всего за 10 минут? 18780Космическая бабочка региона Idaeus Fossae как доказательство водного прошлого Марса 18779Феноменальный взлет стартапа Mercor до оценки в 10 миллиардов долларов за счет... 18778Внедрение защиты данных и конфиденциальности непосредственно в процесс написания... 18777Критический обход аутентификации SAML SSO в устройствах Fortinet FortiGate под активной... 18776Критическая уязвимость React2Shell открывает глобальный доступ к Linux-серверам 18775Анализ старейшей лодки Скандинавии выявил отпечаток пальца и происхождение захватчиков 18774Наследие Атакамского космологического телескопа и подтверждение главного кризиса... 18773Популярное расширение Urban VPN тайно похищает переписки миллионов пользователей с ИИ 18772Зачем древние жители Швеции утопили собаку с костяным кинжалом в ходе загадочного ритуала... 18771Почему концепция «троянского коня» является ключом к успешному захвату внимания в... 18770Критические уязвимости FreePBX открывают возможность удаленного выполнения кода