Ssylka

Какую энергетическую цену скрывает каждый ваш запрос к искусственному интеллекту?

Популярность чат-ботов, таких как ChatGPT, достигла колоссальных масштабов: платформой пользуются почти 200 миллионов человек, которые ежедневно отправляют более миллиарда запросов. Этот экспоненциальный рост напрямую влияет на мировое энергопотребление. Уже в 2023 году центры обработки данных в США отвечали за 4,4% всего потребления электроэнергии в стране, а в глобальном масштабе их доля составляла около 1,5%.
Какую энергетическую цену скрывает каждый ваш запрос к искусственному интеллекту?
Изображение носит иллюстративный характер

Прогнозы показывают, что эти цифры как минимум удвоятся к 2030 году из-за растущего спроса на технологии искусственного интеллекта. Алекс де Врис-Гао, исследователь устойчивости развивающихся технологий в Амстердамском свободном университете и основатель Digiconomist, утверждает, что ИИ в ближайшем будущем будет нести ответственность за «почти половину потребления электроэнергии центрами обработки данных в мире».

Столь высокое энергопотребление обусловлено двумя основными процессами, как определяет ученый-информатик из Мичиганского университета Мошараф Чоудхури: обучением моделей и инференсом, то есть обработкой запросов. Первый этап, обучение, требует обработки огромных наборов данных для распознавания закономерностей и формирования способности к прогнозированию. В индустрии доминирует убеждение «чем больше, тем лучше», что ведет к созданию гигантских моделей.

Современные большие языковые модели (LLM) настолько велики, что не помещаются на одном графическом процессоре (GPU) или даже на одном сервере. Для их обучения требуются кластеры из множества серверов, каждый из которых оснащен в среднем восемью GPU и работает непрерывно на протяжении недель или месяцев. Один такой сервер, например, Nvidia DGX A100, потребляет до 6,5 киловатт энергии.

Наглядным примером служит обучение модели GPT-4 от OpenAI. По оценкам, на этот процесс было затрачено 50 гигаватт-часов энергии. Чтобы осознать этот масштаб, достаточно представить, что такого количества энергии хватит для обеспечения электричеством всего города Сан-Франциско в течение трех дней.

Второй процесс — инференс — это использование уже обученной модели для генерации ответа на запрос пользователя. Хотя одна такая операция требует меньше энергии, чем обучение, их совокупный объем делает этот этап чрезвычайно энергозатратным. По прогнозам OpenAI, к июлю 2025 года пользователи ChatGPT будут ежедневно отправлять более 2,5 миллиардов запросов.

Эта проблема не ограничивается одной платформой. Конкурирующие системы, такие как Gemini от Google, которую представители компании планируют сделать опцией по умолчанию для Google Search, только усугубят ситуацию, многократно увеличив общую нагрузку на энергетическую инфраструктуру.

Основным препятствием для точной оценки экологического воздействия ИИ является политика секретности технологических гигантов. Компании Google, Microsoft и М⃰ не раскрывают данные об энергопотреблении своих платформ или предоставляют статистику, которая скрывает реальное положение дел. Эта непрозрачность мешает спрогнозировать будущий спрос на энергию и понять, сможет ли мировая инфраструктура с ним справиться.

Несмотря на это, исследователи, включая Чоудхури и де Вриса-Гао, работают над количественной оценкой этих затрат. В частности, Мошараф Чоудхури ведет проект ML Energy Leaderboard, который отслеживает энергопотребление ИИ-моделей с открытым исходным кодом на этапе инференса.

Ключевая роль в решении проблемы отводится пользователям и законодателям. Давление со стороны общественности может заставить компании быть более прозрачными. Как отмечают эксперты, «мяч на стороне политиков, чтобы поощрять раскрытие информации». Только обладая полными данными, пользователи смогут делать более ответственный выбор, а регуляторы — внедрять эффективные нормы для контроля за деятельностью корпораций.


Новое на сайте

18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей