Ssylka

Эмоциональный код: как ИИ научился понимать чувства лучше людей

Исследование, опубликованное 21 мая в журнале Communications Psychology, утверждает, что искусственный интеллект превосходит людей в понимании эмоций, особенно в выборе правильной реакции для разрядки напряженных ситуаций. Работа, проведенная учеными из Женевского университета (UNIGE) и Бернского университета (UniBE), ставила целью сравнить производительность моделей ИИ и людей в тестах на эмоциональный интеллект (ЭИ), а также оценить способность ИИ создавать новые валидные тестовые вопросы.
Эмоциональный код: как ИИ научился понимать чувства лучше людей
Изображение носит иллюстративный характер

В ходе эксперимента были задействованы шесть крупных языковых моделей: ChatGPT-4, ChatGPT-o1, Gemini 1.5 Flash, Claude 3.5 Haiku, Copilot 365 и DeepSeek V3. Их результаты сравнивались с человеческими на стандартных тестах ЭИ, таких как STEM, STEU, GEMOK-Blends, GECo Regulation и GECo Management.

Результаты оказались однозначными. Согласно оценкам экспертов-людей, языковые модели выбирали «правильный» эмоциональный ответ в 81% случаев. Показатель людей составил всего 56%. Кроме того, тестовые вопросы, сгенерированные искусственным интеллектом, были признаны людьми-оценщиками эквивалентными по сложности оригинальным и не являлись простым перефразированием. Корреляция между тестами, созданными ИИ, и оригинальными была оценена как «сильная», с коэффициентом 0,46.

Однако многие эксперты скептически отнеслись к выводам, указывая, что методология исследования, основанная на тестах с множественным выбором, не отражает всей сложности реальных эмоциональных взаимодействий. Таймур Иджлал, эксперт в области финансов и информационной безопасности, утверждает, что ИИ не демонстрирует «глубокого понимания», а просто чаще выбирает «статистически ожидаемый ответ». Он отмечает, что даже психологи-люди могут по-разному интерпретировать одни и те же эмоциональные сигналы.

Джейсон Хеннесси, основатель и генеральный директор Hennessy Digital, проводит параллель между исследованием и «Тестом на чтение мыслей по глазам», отмечая, что точность ИИ «резко падает», когда меняются такие переменные, как освещение или культурный контекст. Уайатт Мэйхэм, основатель Northwest AI Consulting, вовсе отвергает значимость исследования, сравнивая его с попыткой считать себя великим терапевтом только потому, что «хорошо справился с тематической викториной об эмоциях на BuzzFeed».

Несмотря на критику, существует реальный пример, подтверждающий способность ИИ эффективно управлять эмоциональными ситуациями. Система Aílton, разработанная Маркосом Алвесом, генеральным директором и главным научным сотрудником HAL-AI, является мультимодальным ассистентом в WhatsApp, использующим голос, текст и изображения. Системой пользуются более 6000 дальнобойщиков в Бразилии.

Aílton с точностью около 80% идентифицирует стресс, гнев или печаль в сообщениях водителей. Этот показатель примерно на 20 процентных пунктов выше, чем у его коллег-людей в аналогичных условиях.

Показательным стал инцидент, когда водитель, ставший свидетелем смертельной аварии с участием своего коллеги, отправил ассистенту 15-секундное голосовое сообщение, полное отчаяния. Aílton мгновенно отреагировал: он выразил тонко сформулированные соболезнования, предоставил контакты для получения психологической помощи и автоматически оповестил менеджеров автопарка о произошедшем.

Маркос Алвес признает, что лабораторные тесты упрощают распознавание эмоций, но утверждает, что изоляция «когнитивного уровня» полезна для анализа. По его словам, большие языковые модели способны анализировать миллиарды предложений и тысячи часов аудиозаписей, что позволяет им кодировать «микроинтонационные сигналы, которые люди часто упускают». Он заключает, что данные, полученные от Aílton в реальных условиях, подтверждают: современные языковые модели уже способны распознавать эмоции и реагировать на них лучше, чем большинство людей.

Статья была обновлена в 10 утра по восточному времени 29 июля для исправления названия и ссылки на Northwest AI Consulting.


Новое на сайте

18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года 18869Реконструкция черепа возрастом 1,5 миллиона лет меняет представление об эволюции Homo...