Ssylka

Почему вода и тяжёлая вода так похожи, несмотря на разницу в составе?

Вода покрывает более 70% поверхности Земли и является основой жизни. Однако существует и её редкая форма — тяжёлая вода (D₂O), в которой обычный водород (H) заменён на дейтерий (D). Дейтерий отличается от водорода наличием одного дополнительного нейтрона и примерно вдвое большей массой. Несмотря на столь заметную разницу, тяжёлая вода встречается всего в нескольких частях на миллион, а её физические свойства удивительно схожи с обычной водой. Например, их температуры замерзания различаются всего на 4°C, что значительно меньше, чем можно было бы ожидать исходя из разницы в массе атомов.
Почему вода и тяжёлая вода так похожи, несмотря на разницу в составе?
Изображение носит иллюстративный характер

Исследователи из Института полимерных исследований Макса Планка под руководством Миши Бонна впервые экспериментально объяснили, почему вода и тяжёлая вода ведут себя так похоже. Ключевую роль играют два специфических квантовомеханических явления, называемых ядерными квантовыми эффектами (NQE). Эти эффекты проявляются на атомном уровне и практически уравновешивают друг друга, делая поведение обеих форм воды почти идентичным.

Суть квантовых эффектов заключается в том, что даже при абсолютном нуле (-273°C) атомы продолжают двигаться, обладая так называемой энергией нулевой точки. В молекуле воды водородные атомы вибрируют с большой амплитудой из-за своей малой массы — это и есть выраженный ядерный квантовый эффект. Когда водород заменяют на более тяжёлый дейтерий, его колебания становятся менее выраженными, и он ближе притягивается к атому кислорода. Это называется внутримолекулярным эффектом: молекула становится компактнее, а расстояние до соседних молекул увеличивается, что уменьшает энергию связи между ними.

Однако существует и противоположный по действию межмолекулярный эффект: атомы дейтерия способны колебаться перпендикулярно линии связи. Это увеличивает энергию связи между молекулами воды. Таким образом, внутримолекулярный и межмолекулярный квантовые эффекты действуют в противоположных направлениях и почти полностью компенсируют друг друга. Итог — свойства обычной и тяжёлой воды, в том числе температуры замерзания, оказываются очень близкими.

Для изучения этих явлений учёные применили уникальную методику — гетеродинно-детектированную суммарную генерацию частот (HD-SFG) спектроскопии. С её помощью исследовали самый верхний слой воды на границе с воздухом, где молекулы обладают большей свободой движения. Анализируя колебательные спектры воды с различными соотношениями водорода и дейтерия, исследователи смогли отдельно количественно измерить вклад внутримолекулярных и межмолекулярных энергетических компонентов.

Работа впервые предоставила экспериментальные доказательства того, что конкурирующие квантовые эффекты в воде действительно почти полностью компенсируют друг друга. Ранее этот факт был лишь теоретическим предположением. Статья с результатами была опубликована в журнале Science Advances.

Открытие подчёркивает значение квантовых явлений для понимания поведения воды — вещества, без которого невозможна жизнь. Такие результаты имеют важное значение для климатических исследований, биохимии и всех областей, где свойства воды играют ключевую роль. Кроме того, инновационный подход исследователей открывает новые возможности для изучения квантовых эффектов и в других сложных системах.


Новое на сайте

18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей