Сверхпроводимость представляет собой состояние вещества, при котором исчезает электрическое сопротивление, что открывает новые горизонты для энергоэффективных технологий. Несмотря на более чем столетнюю историю изучения этого феномена, фундаментальные механизмы его возникновения остаются загадкой для современной физики.

Теория БКШ, успешно описывающая сверхпроводимость в элементарных металлах и водородсодержащих соединениях и отмеченная Нобелевской премией по физике в 1972 году, не охватывает поведение ряда так называемых нетрадиционных сверхпроводников, включая недавно открытые никелевые оксидные материалы.
Ранее опубликованное исследование в журнале Nature утверждало, что водород играет ключевую роль в сверхпроводимости никелевых оксидов, опираясь на данные вторичной ионной масс-спектрометрии. Авторы работы интерпретировали результаты в рамках механизмов, согласующихся с теорией БКШ.
Современное исследование, возглавляемое профессором Ариандо из отдела физики Национального университета Сингапура, сосредоточилось на синтезе исключительно чистых образцов никелевого оксида. В проект были привлечены международные партнеры: ASTAR (Сингапур), Национальный институт стандартов и технологий (США), Гарвардский университет, Южно-Калифорнийский университет, Университет штата Аризона и Корнеллский университет.
Результаты эксперимента показали, что концентрация водорода в сверхчистых образцах оказывается крайне незначительной, что опровергает гипотезу о его решающем влиянии на сверхпроводимость. Лин Эр Чоу, аспирант и один из соавторов исследования, отметил: «Удивительно, что водород даже не присутствует в значительных количествах в данных образцах. Это наблюдение свидетельствует о том, что водород не играет важной роли в возникновении сверхпроводимости в этих материалах».
Новое открытие перенаправляет научные усилия на выявление других фундаментальных механизмов, лежащих в основе сверхпроводимости материалов с высокой критической температурой, расширяя представления о физических процессах в нетрадиционных системах.
Полученные данные были опубликованы одновременно в журналах Nature Communications и Physical Review Letters, что подчеркивает их значимость для мирового научного сообщества.

Изображение носит иллюстративный характер
Теория БКШ, успешно описывающая сверхпроводимость в элементарных металлах и водородсодержащих соединениях и отмеченная Нобелевской премией по физике в 1972 году, не охватывает поведение ряда так называемых нетрадиционных сверхпроводников, включая недавно открытые никелевые оксидные материалы.
Ранее опубликованное исследование в журнале Nature утверждало, что водород играет ключевую роль в сверхпроводимости никелевых оксидов, опираясь на данные вторичной ионной масс-спектрометрии. Авторы работы интерпретировали результаты в рамках механизмов, согласующихся с теорией БКШ.
Современное исследование, возглавляемое профессором Ариандо из отдела физики Национального университета Сингапура, сосредоточилось на синтезе исключительно чистых образцов никелевого оксида. В проект были привлечены международные партнеры: ASTAR (Сингапур), Национальный институт стандартов и технологий (США), Гарвардский университет, Южно-Калифорнийский университет, Университет штата Аризона и Корнеллский университет.
Результаты эксперимента показали, что концентрация водорода в сверхчистых образцах оказывается крайне незначительной, что опровергает гипотезу о его решающем влиянии на сверхпроводимость. Лин Эр Чоу, аспирант и один из соавторов исследования, отметил: «Удивительно, что водород даже не присутствует в значительных количествах в данных образцах. Это наблюдение свидетельствует о том, что водород не играет важной роли в возникновении сверхпроводимости в этих материалах».
Новое открытие перенаправляет научные усилия на выявление других фундаментальных механизмов, лежащих в основе сверхпроводимости материалов с высокой критической температурой, расширяя представления о физических процессах в нетрадиционных системах.
Полученные данные были опубликованы одновременно в журналах Nature Communications и Physical Review Letters, что подчеркивает их значимость для мирового научного сообщества.