Ssylka

Может ли тёмная материя быть вечной?

Исследователи из Токийского городского университета под руководством доцента Вен Инь реализовали наблюдения, направленные на уточнение свойств тёмной материи с использованием новейших инфракрасных технологий. Работа проводилась японской командой учёных, сосредоточенной на поиске распада аксионоподобных частиц (ALP) – одного из перспективных кандидатов на роль тёмной материи.
Может ли тёмная материя быть вечной?
Изображение носит иллюстративный характер

Для реализации эксперимента использовался 6.5-метровый телескоп Magellan Clay в Чили, оснащённый прибором WINERED – современным инфракрасным спектрографом. Использование передовых инструментов, таких как также NIRSpec на телескопе «Джеймс Уэбб», подчеркивает качество и актуальность применяемых технологических решений.

Применённая методика основывается на сравнении широкого фонового излучения с узким диапазоном света, вызванным распадом ALP. Принцип, схожий с дисперсией света через призму, позволяет изолировать специфическую узкополосную характеристику распада, минимизируя влияние зодиакального света и атмосферного свечения.

За время наблюдений продолжительностью четыре часа фиксировался свет в ближе инфракрасном диапазоне, поступающий из галактик Leo V и Tucana II. Все полученные данные были учтены с высокой статистической точностью, что обеспечило надежность результатов эксперимента.

На протяжении более века проблема несоответствия наблюдаемой видимой массы и гравитационного поведения галактик остаётся одной из ключевых в космологии. Тёмная материя, как недостающий компонент этой системы, до сих пор остаётся нерешённой загадкой, требующей поиска новых методов обнаружения её следов.

Отсутствие выявленных признаков распада ALP позволило установить верхние ограничения на частоту таких процессов. В результате вычислений получен нижний предел времени жизни предполагаемых частиц – число, состоящее из единицы с 25–26 нулями, что в десятки и сотни раз превосходит возраст Вселенной.

Полученные результаты представляют самый жесткий предел для жизненного цикла кандидатов тёмной материи и демонстрируют эффективность применения инфракрасной спектроскопии для изучения фундаментальных процессов во Вселенной. Междисциплинарный подход, объединяющий космологию и физику элементарных частиц, открывает новые перспективы в данной области.

Анализ данных выявил небольшие аномалии и избытки сигналов, что предоставляет дополнительные стимулы для дальнейших исследований и углубленного изучения явлений, связанных с поиском «пропавшей» массы во Вселенной.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года