Квантовая гармония столкновений

Исследования столкновений молекул с поверхностями демонстрируют, что за кажущимся хаосом скрываются строгие законы квантовой механики, отмечающие столетие её открытия. Результаты, опубликованные в журнале Science, подтверждают значимость квантового интерференционного эффекта и симметрии в управлении молекулярным поведением.
Квантовая гармония столкновений
Изображение носит иллюстративный характер

При взаимодействии молекул с атомами поверхности происходит обмен энергией и импульсом, причем стандартные принципы классической физики оказываются недостаточными для описания столь сложных процессов. Именно квантовые эффекты позволяют объяснить усиление или ослабление отдельных энергетических переходов.

Группа Раинера Бека из EPFL совместно с учеными из Германии и Соединенных Штатов применила лазерную технологию для контроля квантовых состояний метана (CH4). С использованием насоса-лазера молекулы переводили в конкретное вибрационно-вращательное состояние перед их направлением на поверхность.

Подготовленные молекулы метана направлялись к специально обработанной золотой поверхности Au(111), отличающейся атомарной гладкостью и химической инертностью. Ультра-высокий вакуум, в котором проводились эксперименты, исключал влияние внешних загрязнений, гарантируя чистоту наблюдаемых эффектов.

Квантовый интерференционный эффект проявляется через перекрытие различных маршрутов, по которым могут двигаться молекулы. При несовместимости симметрий квантовых состояний интерференционные пути полностью компенсируются, препятствуя переходу, тогда как совместимые состояния приводят к усилению эффектов и появлению четких переходов.

Аналогия с классическим экспериментом с двойной щелью помогает визуализировать наблюдаемые эффекты: в отличие от влияния интерференции на угловое распределение частиц, здесь она определяет вращательные и вибрационные состояния молекул, непосредственно влияя на дальнейшую динамику столкновений.

После взаимодействия квантовое состояние молекул определялось с помощью тэгирующего лазера, настроенного на конкретные энергетические уровни. Измерения проводились по изменению температуры с помощью высокочувствительного болометра, что позволило точно зафиксировать квантовые переходы после столкновения.

Наблюдаемые интерференционные картины подтверждают, что квантовая интерференция и симметрия играют решающую роль в процессах обмена энергией и импульсом между молекулами и поверхностями. Полученные данные открывают новые возможности для разработки технологий в области поверхностной химии, создания более эффективных катализаторов и оптимизации промышленных процессов.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка