Ssylka

Как появляется молекула, создавшая Вселенную?

Исследователи из Мичиганского государственного университета совершили прорыв в понимании образования триводорода (H3+) – молекулы, которую часто называют «создательницей Вселенной». Новое исследование, опубликованное в Nature Communications, раскрывает неизвестные ранее пути формирования этого важнейшего космического соединения.
Как появляется молекула, создавшая Вселенную?
Изображение носит иллюстративный характер

H3+ играет фундаментальную роль в космической химии, катализируя межзвездные реакции и участвуя в рождении звезд. Эта молекула широко распространена в газовых гигантах Солнечной системы, таких как Юпитер и Сатурн. До недавнего времени считалось, что основной путь её образования – столкновение молекулы водорода (H2) с её ионизированной формой (H2+).

Группа ученых под руководством Пиотра Печуха и Маркоса Дантуса обнаружила альтернативный механизм формирования H3+ в соединениях, известных как метилгалогены и псевдогалогены. Исследование объединило экспериментальные методы ультрабыстрой лазерной спектроскопии и передовые вычисления в области химии.

Ключевым открытием стал механизм «блуждания» в дважды ионизированных молекулах. При двойной ионизации, когда молекула теряет два электрона под воздействием космических лучей или лазера, нейтральный водород (H2) отделяется, «блуждает» вокруг молекулы и захватывает дополнительный протон, образуя H3+.

Исследовательская группа установила четкие закономерности, определяющие, в каких именно соединениях может образовываться H3+. Эти правила можно применить для прогнозирования формирования триводорода в различных органических соединениях как в лабораторных условиях, так и в межзвездном пространстве.

"H3+ имеет решающее значение для астрохимии, от рождения звезд до образования многих органических молекул», – отмечает Маркос Дантус. По словам Пиотра Печуха, даже если новый механизм обеспечивает лишь несколько процентов дополнительных молекул H3+ во Вселенной, это может потребовать пересмотра существующих моделей звездообразования.

Открытие новых путей формирования H3+ может существенно повлиять на наше понимание космической химии. Хотя классический путь образования через столкновение H2 и H2+ остается доминирующим, вклад дважды ионизированных органических соединений в диффузных молекулярных облаках может оказаться значимым для точного моделирования астрофизических процессов.


Новое на сайте

18687Кем на самом деле были мифические «покорители неба» и как генетика раскрыла тысячелетнюю... 18686Астрономы обнаружили крупнейшую вращающуюся структуру во вселенной протяженностью 5,5... 18685Критическая уязвимость React Server Components с максимальным рейтингом опасности... 18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных...