Ssylka

Как измерить невидимые световые волны в оптических резонаторах?

Группа исследователей из Института Фрица Габера Общества Макса Планка и Центра Гельмгольца Дрезден-Россендорф совершила прорыв в области измерения электрических полей света. Результаты их работы, опубликованные в журнале "Light: Science & Applications", демонстрируют новый метод высокоточного измерения световых волн в терагерцовом диапазоне.
Как измерить невидимые световые волны в оптических резонаторах?
Изображение носит иллюстративный характер

Ключевым достижением стала разработка экспериментальной платформы, использующей электрооптические резонаторы Фабри-Перо (EOCs). Эта технология позволяет измерять электрические поля света, захваченного между зеркалами, с беспрецедентной точностью на субцикловом уровне.

Исследователи создали инновационную гибридную конструкцию резонатора, включающую настраиваемый воздушный зазор и расщепленный детекторный кристалл. Такая конфигурация обеспечивает точный контроль над внутренними отражениями и позволяет создавать селективные интерференционные картины по требованию.

Особое внимание в исследовании уделено терагерцовому спектральному диапазону, который имеет fundamental значение для изучения свойств материалов. Низкоэнергетические возбуждения в этом диапазоне определяют ключевые характеристики веществ и открывают путь к наблюдению новых состояний, объединяющих свойства света и материи.

Майкл С. Спенсер, первый автор исследования, отмечает: «Наша работа открывает новые возможности для изучения и управления фундаментальными взаимодействиями между светом и материей, предоставляя уникальный инструментарий для будущих научных открытий».

Профессор Себастьян Мэрляйн, руководитель исследовательской группы, подчеркивает: «Наши электрооптические резонаторы обеспечивают высокоточное представление поля, открывая новые пути для квантовой электродинамики в эксперименте и теории».

Разработанная технология имеет широкие перспективы применения в квантовых вычислениях, материаловедении и фундаментальной физике. Возможность управления интерференционными картинами в реальном времени создает основу для манипулирования свойствами материалов и углубленного изучения взаимодействий света с веществом в области квантовой электродинамики.

Гибридная конструкция резонатора позволила исследователям измерить и смоделировать набор допустимых мод внутри полости, обеспечивая возможность переключения между узлами и максимумами световых волн в точках интереса. Математические модели подтверждают экспериментальные наблюдения, расшифровывая сложную дисперсию в резонаторе.


Новое на сайте

18687Кем на самом деле были мифические «покорители неба» и как генетика раскрыла тысячелетнюю... 18686Астрономы обнаружили крупнейшую вращающуюся структуру во вселенной протяженностью 5,5... 18685Критическая уязвимость React Server Components с максимальным рейтингом опасности... 18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных...