Ssylka

Прорыв в предсказании фазовых переходов: машинное обучение объединяется с физикой

Исследователи Университета Байройта совершили значительный прорыв в области прогнозирования фазовых переходов между жидким и газообразным состояниями вещества. Объединив статистическую физику с машинным обучением, они разработали метод, позволяющий точно определять состояние вещества при заданных условиях.
Прорыв в предсказании фазовых переходов: машинное обучение объединяется с физикой
Изображение носит иллюстративный характер

Фазовые переходы между жидкостью и газом играют фундаментальную роль как в природных явлениях, так и в промышленных процессах. На примере стакана воды можно наблюдать, как молекулы постоянно переходят из жидкой фазы в газообразную путем испарения и обратно через конденсацию. При определенной критической температуре граница между жидкостью и газом исчезает, образуя сверхкритическую жидкость – явление, широко применяемое в промышленных процессах разделения, очистки и производства.

История изучения фазовых переходов уходит корнями в XIX век, когда Томас Эндрюс экспериментально обнаружил критическую точку. Позже Йоханнес Дидерик ван дер Ваальс, удостоенный Нобелевской премии в 1910 году, предложил теоретическую модель фазового разделения, которая, несмотря на использование грубых приближений, до сих пор остается в учебниках.

Новый метод разработан командой ученых, в которую вошли доктор Флориан Заммюллер и профессор Маттиас Шмидт из Университета Байройта, а также почетный профессор Роберт Эванс – основоположник классической теории функционала плотности. Исследователи объединили функциональные соотношения, сформулированные Эвансом в 1979 году, с возможностями нейронных сетей.

Инновационный подход позволяет преодолеть ограничения традиционных методов. По словам профессора Шмидта, машинное обучение значительно повышает точность прогнозов, а предположения ван дер Ваальса теперь могут быть количественно проверены и в значительной степени подтверждены.

Доктор Заммюллер подчеркивает важность теоретической физики в контроле предсказаний искусственного интеллекта: статистическая механика жидкостей предоставляет строгие уравнения для проверки качества прогнозов ИИ.

Новая методология открывает широкие перспективы применения в различных областях, включая изучение смачивания поверхностей, капиллярного поведения в порах и явлений расслоения. Гибридный подход, сочетающий машинное обучение и теорию жидкостей, создает основу для гибкого моделирования веществ и оптимизации промышленных процессов.


Новое на сайте

19033Обнаружение древнейшей подтвержденной спиральной галактики с перемычкой COSMOS-74706 19032Микрогравитация на мкс превратила вирусы в эффективных убийц устойчивых бактерий 19031Как древние римляне управляли капиталом, чтобы обеспечить себе пассивный доход и защитить... 19030Миссия Pandora: новый инструмент NASA для калибровки данных телескопа «Джеймс Уэбб» 19029Телескоп Джеймс Уэбб запечатлел «неудавшиеся звезды» в звездном скоплении вестерлунд 2 19028Как «пенопластовые» планеты в системе V1298 Tau стали недостающим звеном в понимании... 19027Возможно ли одновременное глобальное отключение всего мирового интернета? 19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и...