Ssylka

Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?

Исследователи из Университета Райса совершили прорыв в изучении релаксорных сегнетоэлектриков, обнаружив неожиданное улучшение свойств материала при его сверхтонком состоянии. Команда под руководством Лейна Мартина, директора Института передовых материалов Райса, сфокусировалась на изучении титаната-ниобата свинца-магния (PMN-PT).
Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?
Изображение носит иллюстративный характер

PMN-PT представляет собой керамический материал с уникальными свойствами преобразования механической энергии в электрическую и наоборот. Его широко применяют в медицинской визуализации, сборе энергии, газовых датчиках и наноэлектронике. Особенность материала заключается в наличии полярных нанодоменов – областей размером 5-10 нанометров, где локальные диполи выстраиваются в одном направлении.

Джиеун Ким, ныне доцент Корейского института передовых технологий (KAIST), начала этот проект четыре года назад, будучи аспиранткой в Калифорнийском университете Беркли. Исследователи предполагали, что при уменьшении толщины пленок PMN-PT полярные нанодомены будут сокращаться и исчезать, что приведет к потере полезных свойств материала.

Используя ультраяркие рентгеновские лучи в Национальной лаборатории Аргонн, команда провела синхротронную рентгеновскую дифракцию для изучения атомной структуры истончающегося материала. Дополнительно применялась просвечивающая электронная микроскопия для картирования поляризации с атомарным разрешением и молекулярно-динамическое моделирование.

Неожиданным открытием стало обнаружение «золотой середины» – диапазона толщины около 25-30 нанометров (в 10000 раз тоньше человеческого волоса), где PMN-PT демонстрирует улучшенные характеристики. В этом диапазоне значительно повышается фазовая стабильность материала, то есть его способность сохранять структуру и функциональность.

Это открытие открывает новые перспективы для наноэлектромеханических систем, накопителей энергии, пироэлектрического преобразования энергии и магнитоэлектрических устройств следующего поколения. «Никто точно не знал, что произойдет, если мы уменьшим весь материал до размера нанодоменов», – отметила Джиеун Ким.

Исследователи планируют создавать многослойные структуры из сверхтонких слоев PMN-PT и родственных материалов, формируя новые композиты с уникальными свойствами для энергосбережения, низкоэнергетических вычислений и передовых датчиков. Результаты исследования, опубликованные в журнале Nature Nanotechnology, предоставляют инженерам новый путь проектирования устройств на основе сверхтонких пленок релаксорных сегнетоэлектриков.


Новое на сайте

19034Откуда берется загадочное инфракрасное свечение вокруг сверхмассивных черных дыр? 19033Обнаружение древнейшей подтвержденной спиральной галактики с перемычкой COSMOS-74706 19032Микрогравитация на мкс превратила вирусы в эффективных убийц устойчивых бактерий 19031Как древние римляне управляли капиталом, чтобы обеспечить себе пассивный доход и защитить... 19030Миссия Pandora: новый инструмент NASA для калибровки данных телескопа «Джеймс Уэбб» 19029Телескоп Джеймс Уэбб запечатлел «неудавшиеся звезды» в звездном скоплении вестерлунд 2 19028Как «пенопластовые» планеты в системе V1298 Tau стали недостающим звеном в понимании... 19027Возможно ли одновременное глобальное отключение всего мирового интернета? 19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой?