Ssylka

Как нанотоннели влияют на адсорбцию газов в платиново-золотых структурах?

Группа исследователей из Токийского столичного университета под руководством профессора Сэйдзи Ямазоэ совершила важное открытие в области наноматериалов. Учёные детально изучили процессы адсорбции водорода и угарного газа в твердых веществах, содержащих особую «корончатую» структуру из платины и золота.
Как нанотоннели влияют на адсорбцию газов в платиново-золотых структурах?
Изображение носит иллюстративный характер

Исследование сфокусировалось на уникальном соединении [PtAu₈(PPh₃)₈]-H[PMo₁₂O₄₀], сокращённо названном PtAu₈-PMo₁₂. Его структура представляет собой атом платины, окружённый восемью атомами золота, защищёнными фосфиновыми лигандами и встроенными в кристаллическую решётку. Особенность материала заключается в наличии наноразмерных полостей, соединённых ультратонкими каналами.

Используя быстрое рентгеновское поглощение с интервалом измерений 0,1 секунды, исследователи наблюдали, как структура твёрдого вещества изменяется при введении газов. Эксперименты показали, что и водород, и угарный газ успешно связываются с атомом платины, существенно меняя атомное расположение и электронное состояние платины.

Важным открытием стала разница в скорости и обратимости адсорбции газов. Водород адсорбируется быстрее и обратимо, в то время как угарный газ связывается необратимо. Это объясняется размерами молекул: более мелкие молекулы водорода легче проникают через наноканалы, тогда как крупные молекулы CO движутся медленнее и прочнее связываются с платиной.

При связывании с угарным газом происходит интересная структурная трансформация: исходная «корончатая» структура преобразуется в «чашеобразную», при этом атом платины глубже погружается в кольцо из атомов золота.

Данное исследование демонстрирует критическую важность размеров и связности нанотоннелей для контроля поглощения и высвобождения газов. Это открывает новые возможности для создания высокочувствительных газовых сенсоров, технологий разделения газов и катализаторов следующего поколения.

Результаты работы вносят существенный вклад в понимание «структурного перепрограммирования» химических соединений, показывая, как диффузия в пустотах управляет структурными изменениями и транспортом газов в твёрдых телах.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем