Ssylka

Как нанотоннели влияют на адсорбцию газов в платиново-золотых структурах?

Группа исследователей из Токийского столичного университета под руководством профессора Сэйдзи Ямазоэ совершила важное открытие в области наноматериалов. Учёные детально изучили процессы адсорбции водорода и угарного газа в твердых веществах, содержащих особую «корончатую» структуру из платины и золота.
Как нанотоннели влияют на адсорбцию газов в платиново-золотых структурах?
Изображение носит иллюстративный характер

Исследование сфокусировалось на уникальном соединении [PtAu₈(PPh₃)₈]-H[PMo₁₂O₄₀], сокращённо названном PtAu₈-PMo₁₂. Его структура представляет собой атом платины, окружённый восемью атомами золота, защищёнными фосфиновыми лигандами и встроенными в кристаллическую решётку. Особенность материала заключается в наличии наноразмерных полостей, соединённых ультратонкими каналами.

Используя быстрое рентгеновское поглощение с интервалом измерений 0,1 секунды, исследователи наблюдали, как структура твёрдого вещества изменяется при введении газов. Эксперименты показали, что и водород, и угарный газ успешно связываются с атомом платины, существенно меняя атомное расположение и электронное состояние платины.

Важным открытием стала разница в скорости и обратимости адсорбции газов. Водород адсорбируется быстрее и обратимо, в то время как угарный газ связывается необратимо. Это объясняется размерами молекул: более мелкие молекулы водорода легче проникают через наноканалы, тогда как крупные молекулы CO движутся медленнее и прочнее связываются с платиной.

При связывании с угарным газом происходит интересная структурная трансформация: исходная «корончатая» структура преобразуется в «чашеобразную», при этом атом платины глубже погружается в кольцо из атомов золота.

Данное исследование демонстрирует критическую важность размеров и связности нанотоннелей для контроля поглощения и высвобождения газов. Это открывает новые возможности для создания высокочувствительных газовых сенсоров, технологий разделения газов и катализаторов следующего поколения.

Результаты работы вносят существенный вклад в понимание «структурного перепрограммирования» химических соединений, показывая, как диффузия в пустотах управляет структурными изменениями и транспортом газов в твёрдых телах.


Новое на сайте

18294Сообщения в iOS 26: от ИИ-фонов до групповых опросов 18293Почему для исправления «техношеи» нужно укреплять мышцы, а не растягивать их? 18292Как новорожденная звезда подала сигнал из эпицентра мощнейшего взрыва? 18291Нотный рецепт: как наука превращает музыку в обезболивающее 18290Что превращает кофейное зерно в идеальный напиток? 18289Как пробуждение древних микробов и тайны черных дыр меняют наше будущее? 18288Как 3500-летняя крепость в Синае раскрывает секреты египетской военной мощи? 18287Китайская кибергруппа Silver Fox расширяет охоту на Японию и Малайзию 18286Набор инструментов Kobalt на 297 предметов в Lowe's всего за $99 18285Анатомия вирусного успеха дубайского шоколада 18284Почему лемуры Мадагаскара нарушают общепринятые законы эволюции? 18283Капля крови против рака: новая эра диагностики онкологии 18282Как северокорейские хакеры создают универсальное кибероружие из двух вредоносных программ? 18281Как пугало проиграло войну с птицами и стало культурным символом 18280Таблетка-принтер для заживления тканей изнутри