Ssylka

Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?

Class Activation Maps (CAM) позволяют понять, какие области изображения наиболее важны для модели при принятии решения, показывая, какие признаки извлекает модель на разных слоях свертки и как они влияют на прогноз конкретного класса. CAM можно реализовать вручную для задач классификации, используя сверточные нейросети.
Как визуализировать, что именно видит нейросеть YOLO NAS S при распознавании объектов?
Изображение носит иллюстративный характер

Архитектура YOLO NAS включает backbone, neck и head. Backbone извлекает признаки, neck передает их, а head принимает решение о классификации и локализации объекта. CAM строится на головах, так как оттуда можно извлечь веса, влияющие на прогноз. На backbone визуализируют активации. Для извлечения данных используют hook-методы PyTorch, «подключаясь» к слоям сети. При инференсе необходимо установить fuse_model=False, иначе информативность карт снижается.

Анализ показал, что с увеличением номера stage (уровня свертки) модель анализирует более крупные области. Медианные значения активаций различаются на ранних этапах, но стабилизируются на уровне голов. Локализация усиливается с увеличением номера головы, так как более поздние головы используют выходы более поздних stages, фокусируясь на более специфичных признаках.

CAM помогает визуализировать влияние входных данных на прогноз модели на каждом уровне архитектуры, глубже понять работу архитектуры и оценить стабильность модели. Анализ стабильности помогает выявить чувствительность модели к шуму и искажениям, повышая надежность моделей в реальных условиях.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...