Ssylka

Как эффективно сегментировать дефекты на промышленных изображениях?

Для решения задачи сегментации дефектов на производственных изображениях, был применен подход, основанный на архитектуре UNet. В качестве энкодера использовалась предобученная модель MobileNetV2, что позволило снизить вычислительные затраты, в то время как декодер был реализован с применением техники upsampling из pix2pix. Это сочетание позволило эффективно извлекать и восстанавливать пространственные детали изображений, необходимые для точного обнаружения дефектов.
Как эффективно сегментировать дефекты на промышленных изображениях?
Изображение носит иллюстративный характер

Несмотря на ограничения в объеме данных, модель достигла значительных результатов, продемонстрировав точность около 89.8% и IoU (Intersection over Union) в районе 80.2% на тренировочном наборе данных, и немного хуже на валидационных данных. Такой уровень производительности свидетельствует об эффективности выбранного подхода, особенно с учетом ограничений, наложенных условиями задачи. Применялись также методы аугментации данных, такие как горизонтальные повороты, для расширения обучающей выборки и повышения устойчивости модели.

Реализация модели включала использование TensorFlow, стандартного набора инструментов для машинного обучения. В процессе работы применялись методы downsampling, основанные на архитектуре MobileNetV2, и upsampling с применением pix2pix для восстановления изображений. Обучение проводилось с использованием оптимизатора Adam, функции потерь Binary Crossentropy и метрики IoU.

В заключение, несмотря на некоторые ошибки в предсказаниях, особенно при работе с нечеткими или сильно загрязненными изображениями, модель показала свою эффективность в условиях ограниченного объема данных и времени на обучение. Дальнейшее улучшение может быть достигнуто за счет настройки гиперпараметров, увеличения объема данных и исследования альтернативных архитектур нейросетей.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...