Ssylka

Что такое «квантовый дождь» и как его наблюдали впервые?

Исследователи из Лаборатории квантовых смесей Национального института оптики (Cnr-Ino) совместно с учёными из Национального исследовательского совета Италии (Cnr), Университета Флоренции, Европейской лаборатории нелинейной спектроскопии (LENS), а также университетов Болоньи, Падуи и Страны Басков (UPV/EHU) впервые зафиксировали явление, которое они называют «квантовым дождём». Результаты опубликованы в журнале Physical Review Letters.
Что такое «квантовый дождь» и как его наблюдали впервые?
Изображение носит иллюстративный характер

Впервые в истории капиллярная неустойчивость, известная как неустойчивость Плато – Рэлей, была обнаружена не только в классических жидкостях (как вода или сверхтекучий гелий), но и в ультраразреженном квантовом газе. В классических жидкостях капиллярная неустойчивость проявляется в разрыве тонкой струи жидкости на последовательность капель — процесс, который лежит в основе образования дождя и пузырей, а также широко используется в промышленности, биомедицине и нанотехнологиях.

В классических жидкостях этот процесс происходит благодаря поверхностному натяжению — явлению, обусловленному межмолекулярными силами, стремящимися минимизировать площадь поверхности. В результате, например, капля дождя принимает форму шара, а мыльный пузырь — сферу.

В квантовой физике ситуация усложняется: если атомные газы охлаждать до температур, близких к абсолютному нулю, отдельные атомы теряют индивидуальность и начинают подчиняться законам квантовой механики. В определённых условиях такие газы могут вести себя как жидкости, хотя сами по себе они всё ещё остаются газами. Учёные научились формировать из сверххолодных атомных смесей (например, калия и рубидия) связанные, «жидкоподобные» капли. Эти капли стабилизируются исключительно за счёт квантовых эффектов, и по своему поведению напоминают обычные жидкие капли.

Эксперимент, проведённый под руководством Алессии Буркянти (Cnr-Ino), заключался в исследовании динамики одной квантовой капли из смеси ультрахолодных атомов калия и рубидия. Каплю выпускали в оптический световод, где она вытягивалась в тонкую нить — «филамент». При достижении критической длины этот филамент разрывался на несколько меньших капель — квантовых субдроплетов. Количество образовавшихся субдроплетов оказывалось прямо пропорциональным длине филамента в момент разрыва.

Команда исследователей совместила экспериментальные наблюдения и численное моделирование, чтобы описать динамику распада квантовой капли на субдроплеты в терминах капиллярной неустойчивости. «Объединяя эксперименты и численные симуляции, удалось описать динамику распада квантовой капли с точки зрения капиллярной неустойчивости», — отмечает исследователь Университета Флоренции Кьяра Форт.

Лука Кавиккиоли, первый автор публикации и сотрудник Cnr-Ino, подчёркивает: «Измерения позволили глубоко понять эту уникальную жидкую фазу и открывают путь к созданию массивов квантовых капель для будущих квантовых технологий».

До этого момента капиллярная неустойчивость в атомных газах не фиксировалась ни в одном эксперименте. Её наблюдали лишь в классических жидкостях и сверхтекучем гелии. Теперь впервые показано, что квантовые жидкости из ультраразреженных газов способны демонстрировать аналогичные явления.

Открытие «квантового дождя» не только подтверждает существование новых фаз квантовых жидкостей, но и открывает перспективы для создания массивов квантовых капель, что может стать основой для новых технологий в области квантовых вычислений и сенсорики.


Новое на сайте

16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над...