Ssylka

Жидкий палладий-галлиевый катализатор ускоряет химию в 100 000 раз

Исследователи из Университета Монаша, Сиднейского университета и Университета RMIT разработали новаторский жидкий катализатор на основе палладия, растворенного в жидком галлии. Это открытие способно кардинально изменить химическое производство, сделав его значительно быстрее, безопаснее и экологичнее.
Жидкий палладий-галлиевый катализатор ускоряет химию в 100 000 раз
Изображение носит иллюстративный характер

Новый катализатор ускоряет химические реакции до 100 000 раз по сравнению с лучшими существующими твердотельными палладиевыми аналогами. Такая беспрецедентная эффективность открывает путь к революционным изменениям в производстве широкого спектра необходимых продуктов в различных отраслях промышленности.

Ключевым преимуществом является безопасность. Катализатор функционирует как истинный гетерогенный катализатор, находясь в отдельной фазе от реагентов и продуктов. Важно, что он не допускает выщелачивания ионов палладия, предотвращая загрязнение конечных продуктов, особенно фармацевтических препаратов, и связанные с этим риски для здоровья.

Ведущий исследователь, доцент Мд. Арифур Рахим из Департамента химической и биологической инженерии Университета Монаша, совместно со старшим соавтором доктором Эндрю Дж. Кристофферсоном из RMIT, первым автором Мд. Хасаном Аль Банна и старшим соавтором профессором Курошем Калантар-Заде, продемонстрировали уникальные свойства системы. Катализатор обладает способностью к самовосстановлению, что повышает его долговечность и экономическую привлекательность.

Механизм действия жидкого катализатора принципиально отличается от твердотельных аналогов. Он использует флюидоподобное поведение атомов палладия (Pd) в жидком галлии (Ga). Атомы палладия располагаются непосредственно под поверхностью жидкого металла и активируют находящиеся над ними атомы галлия. Химическая реакция протекает именно на этой активированной поверхности.

Эффективность катализатора была продемонстрирована на примере реакций кросс-сочетания Сузуки-Мияуры. Этот метод, удостоенный Нобелевской премии, используется для формирования связей углерод-углерод (C‒C) и имеет критическое значение в синтезе фармацевтических препаратов, агрохимикатов и в материаловедении.

Потенциальное влияние разработки охватывает множество секторов. В фармацевтике это позволит быстрее создавать жизненно важные лекарства. В агрохимии — разрабатывать более экологичные средства защиты растений. В производстве передовых материалов — эффективнее получать пластмассы, полимеры и компоненты для электроники. В целом, это шаг к более устойчивым промышленным процессам во всем мире.

Результаты этого прорывного исследования опубликованы в авторитетном научном журнале Science Advances. Разработка не только решает существующие проблемы в катализе, но и стимулирует дальнейшие инновации в дизайне каталитических систем для более зеленого и эффективного будущего.


Новое на сайте

18274Почему Microsoft отозвала более 200 сертификатов для остановки шифровальщика Rhysida? 18273Как скидка 40% от Eddie Bauer изменит ваше представление об экипировке? 18272Мог ли наш родственник с хваткой гориллы создавать каменные орудия? 18271Космическое молчание раскрыло тайну первого света 18270Грибная броня: как орган слуха клопов оказался фермой для защиты потомства 18269Почему считавшийся потухшим 700 тысяч лет вулкан начал расти? 18268Какое будущее джорджио Армани предначертал для своего модного дома? 18267Инновации Microsoft или ультиматум для миллионов пользователей? 18266Магический пакет TCP активирует невидимый руткит LinkPro 18265Блокчейн как оружие: хакеры из КНДР прячут вредоносы в смарт-контрактах 18264Как увидеть редкий двойной полет зеленых комет над землей? 18263Скрывает ли популярность пиклбола растущую угрозу для зрения? 18262Идеальная чистка с ИИ: Oral-B iO 9 стала доступнее на $100 18261Может ли звезда родиться, нарушая все известные законы? 18260Космическая линза раскрыла рекордно малый сгусток темной материи