Ssylka

Могут ли молекулы объяснить тайны непериодичности?

Математики и дизайнеры всегда интересовались, как отдельные формы могут покрывать плоскость без повторения узоров. Непериодичные раскладки завораживают своей способностью заполнять пространство уникальными последовательностями.
Могут ли молекулы объяснить тайны непериодичности?
Изображение носит иллюстративный характер

В 2018 году химик Карл-Хайнц Эрнст проводил эксперимент в Швейцарских Федеральных лабораториях материаловедения и технологий в Дюбендорфе, распыляя специальную углеводородную молекулу на серебряный субстрат. Под микроскопом молекулы образовывали трехлучевые спирали, группирующиеся в треугольники разной величины, при этом каждая из примерно ста попыток давала новую, не повторяющуюся последовательность.

В 2023 году математик и специалист по компьютерным наукам Крейг Каплан из Университета Ватерлоо (Канада) открыл elusive einstein tile – единственную фигуру, способную замостить плоскость только непериодичным способом. Это открытие позволило трактовать наблюдаемые молекулярные узоры как «молекулярного эйнштейна», а Каплан отметил, что такое спонтанное возникновение напоминает «сбой в матрице».

Каплан предостерегает, что молекулярные компоненты не полностью соответствуют математическому идеалу: они не могут идеально уплотниться в строго неповторяющуюся мозаику. Однако именно такая нерегулярность может наделить материал уникальными и необычными свойствами.

Явление напоминает квазикристаллы, чья атомная структура демонстрирует упорядоченность без повторяющихся мотивов. В 2024 году физик Феликс Фликер из Университета Бристоля (Англия) разработал компьютерную модель квазикристалла по образцу einstein tile, предсказав такое поведение, которое сравнили с «прокачанным» листом графена, подчеркивая тем самым загадочность механизма формирования подобных структур.

Ключевую роль в возникновении этих узоров играет энтропия – мера беспорядка и статистической вероятности атомной организации. Возможность молекулы легко переходить между двумя зеркальными (хиральными) формами в сочетании с слабыми межмолекулярными связями обеспечивает многочисленные варианты неповторяющихся расположений, способствуя переходу системы к состоянию высокой энтропии.

Исследование баланса между регулярностью и случайностью ярко иллюстрирует принципы теории «порядок через беспорядок». Такой подход открывает перспективы для разработки методов создания квазикристаллов по требованию и способствует установлению неожиданных связей между материалами, математикой и технологией.

Данные исследования, опубликованные в январе 2025 года в журнале Nature Communications, находят отклик в словах Карл-Хайнца Эрнста: «Это природа, занимающаяся математикой», что отражает удивительное единение естественных процессов и сложных математических идей.


Новое на сайте

16953Обречена ли вселенная на коллапс через 10 миллиардов лет? 16952Новая забастовка усугубляет репутационный кризис Boeing 16951Хорнелундское золото: неразгаданная тайна викингов 16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым