Ssylka

Могут ли слабые места задавать новые принципы наносборки?

Исследование использования слабых участков в полупроводниковых нанопластинках открывает путь к точному управлению наноструктурными сборками. В центре внимания кадмий-селенидовые нанопластинки, всего в несколько атомов толще, обладающие экстраординарными оптическими и электронными характеристиками, способными стать базой для инновационных электронных материалов.
Могут ли слабые места задавать новые принципы наносборки?
Изображение носит иллюстративный характер

Сотрудничество Helmholtz-Zentrum Dresden-Rossendorf, Технического университета Дрездена и Leibniz Institute for Solid State and Materials Research Dresden позволило провести комплексный эксперимент, результаты которого опубликованы в журнале Small. Ведущими специалистами стали доктор Рико Фридрих из Института и кафедры теоретической химии HZDR и TU Dresden, а также профессор Александр Эйхмюллер, возглавляющий кафедру физической химии TU Dresden.

Кадмий-селенидовые нанопластинки демонстрируют высокую эффективность взаимодействия с ближним инфракрасным (NIR) излучением. Материал способнен поглощать, отражать и испускать NIR свет, что имеет решающее значение в медицинской диагностике, системах волоконной связи и солнечной энергетике благодаря снижению рассеяния света и повышению эффективности устройств.

Задача точного управления оптическими и электронными свойствами материалов требует новых подходов. Современные методы нанохимического синтеза, основанные на эмпирическом подборе условий, уступают технологии замены катионов, позволяющей изменять количество атомных слоев и состав наноструктуры без влияния на ее геометрические размеры.

Применение метода замены катионов обеспечивает беспрецедентный контроль над структурой и составом наночастиц. Ранее недостаточно изученные этапы реакции обмена катионов теперь получили детальное объяснение, что позволяет создавать материалы с характеристиками, ранее недостижимыми при традиционных методах синтеза.

Особое внимание уделено активным углам нанопластинок, представляющим участки с повышенной химической реактивностью и концентрацией заряженных носителей. Управление дефектами в этих зонах позволяет связывать наночастицы в организованные структуры и открывает перспективы для однократного атомного катализа, усиливая эффективность химических процессов.

Систематическое соединение нанопластинок посредством их реакционноспособных углов способствует формированию самоорганизующихся структур. Такие материалы могут использоваться для создания NIR-датчиков, новых электронных компонентов, повышения эффективности солнечных элементов и разработки инновационных методов передачи данных, расширяя границы возможностей в наноразмерном дизайне.

Комплексный подход, объединяющий усовершенствованный химический синтез, методы атомно-разрешающей электронной микроскопии и теоретическое моделирование, позволил точно изучить распределение атомных дефектов и разобраться в механизмах реакции. Этот интегрированный метод становится краеугольным камнем для разработки новых принципов формирования и управления наноструктурами.


Новое на сайте

16967Гигант из облачных лесов: в Австралии открыт новый палочник-тяжеловес 16966Короли-сатиры: новый род пауков с рекордно длинными гениталиями 16965Может ли провал стать главным активом предпринимателя? 16964Какова реальная цена загрязнения «вечными химикатами»? 16963Яркий акцент для спорта: наушники ACEFAST AceFit Pro со скидкой 26% 16962Химия первых звезд: пересмотр основ мироздания 16961Забытая окаменелость раскрыла новый вид морского ящера 16960Великая стена Адриана: рубеж Римской империи в Британии 16959Как вьетнамские киберпреступники превратили Telegram в рынок украденных данных? 16958Скрытая угроза в голубой воде бассейна 16957Бактериальный след: ученые нашли виновника гибели 5 миллиардов морских звезд 16956Почему гигантская акула-молот предпочитает охотиться на других акул? 16955Волнообразные соседи солнца: тайные колыбели звёзд 16954Как свободный выбор приложений сотрудниками создает скрытые угрозы для бизнеса? 16953Обречена ли вселенная на коллапс через 10 миллиардов лет?