Как квазикристаллы открыли дверь в четвертое измерение?

В 1982 году профессор Дан Шехтман совершил революционное открытие, обнаружив в сплаве алюминия и марганца необычную кристаллическую структуру. Используя электронную микроскопию, он зафиксировал дифракционную картину, которая противоречила всем существовавшим представлениям о строении кристаллов. Это открытие положило начало изучению квазикристаллов – материалов с квазипериодическим расположением атомов.
Как квазикристаллы открыли дверь в четвертое измерение?
Изображение носит иллюстративный характер

Значимость этого открытия была признана научным сообществом, и в 2011 году Дан Шехтман был удостоен Нобелевской премии по химии. Физики Дов Левин и Пол Стейнхардт предложили революционную гипотезу, объясняющую природу квазикристаллов: эти структуры представляют собой трехмерные проекции объектов, существующих в четырехмерном пространстве.

Международная группа ученых из Израиля и Германии провела исследование, результаты которого опубликованы в журнале Science. Используя электромагнитные волны, исследователи изучили взаимодействие света с поверхностью квазикристаллов, что позволило глубже понять их топологические свойства и связь с четырехмерной структурой.

Наблюдения показали, что на сверхмалых временных масштабах – аттосекундах (миллиардных долях миллиардной доли секунды) – квазикристаллы демонстрируют сложное поведение, переходя между различными состояниями. Эти переходы определяются как топологическими особенностями их четырехмерной природы, так и термодинамическими свойствами.

Уникальные характеристики квазикристаллов открывают широкие перспективы для их практического применения. Они могут стать основой для создания новых материалов с необычными свойствами, которые найдут применение в различных областях технологии.

Особенно многообещающим выглядит использование квазикристаллов в сфере обработки информации. Их структурные особенности позволяют разрабатывать более емкие и быстрые носители данных, а также создавать более устойчивые квантовые компьютеры.

Топологические свойства квазикристаллов, связанные с их четырехмерной природой, могут стать ключом к развитию квантовых вычислений. Их способность существовать на границе трех- и четырехмерного пространства открывает новые возможности для создания квантовых систем с повышенной стабильностью и эффективностью.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка