Ssylka

Как квазикристаллы открыли дверь в четвертое измерение?

В 1982 году профессор Дан Шехтман совершил революционное открытие, обнаружив в сплаве алюминия и марганца необычную кристаллическую структуру. Используя электронную микроскопию, он зафиксировал дифракционную картину, которая противоречила всем существовавшим представлениям о строении кристаллов. Это открытие положило начало изучению квазикристаллов – материалов с квазипериодическим расположением атомов.
Как квазикристаллы открыли дверь в четвертое измерение?
Изображение носит иллюстративный характер

Значимость этого открытия была признана научным сообществом, и в 2011 году Дан Шехтман был удостоен Нобелевской премии по химии. Физики Дов Левин и Пол Стейнхардт предложили революционную гипотезу, объясняющую природу квазикристаллов: эти структуры представляют собой трехмерные проекции объектов, существующих в четырехмерном пространстве.

Международная группа ученых из Израиля и Германии провела исследование, результаты которого опубликованы в журнале Science. Используя электромагнитные волны, исследователи изучили взаимодействие света с поверхностью квазикристаллов, что позволило глубже понять их топологические свойства и связь с четырехмерной структурой.

Наблюдения показали, что на сверхмалых временных масштабах – аттосекундах (миллиардных долях миллиардной доли секунды) – квазикристаллы демонстрируют сложное поведение, переходя между различными состояниями. Эти переходы определяются как топологическими особенностями их четырехмерной природы, так и термодинамическими свойствами.

Уникальные характеристики квазикристаллов открывают широкие перспективы для их практического применения. Они могут стать основой для создания новых материалов с необычными свойствами, которые найдут применение в различных областях технологии.

Особенно многообещающим выглядит использование квазикристаллов в сфере обработки информации. Их структурные особенности позволяют разрабатывать более емкие и быстрые носители данных, а также создавать более устойчивые квантовые компьютеры.

Топологические свойства квазикристаллов, связанные с их четырехмерной природой, могут стать ключом к развитию квантовых вычислений. Их способность существовать на границе трех- и четырехмерного пространства открывает новые возможности для создания квантовых систем с повышенной стабильностью и эффективностью.


Новое на сайте

15188Люди против аллигаторов: как поведение человека приводит к укусам 15187Виментин: новый взгляд на ключевой белок клеточного каркаса 15186Митонуклеарная несовместимость: новая разгадка мужского перекоса среди внепарных птенцов... 15185Фосфор: путешествие от межзвёздной пыли к жизни на земле 15184Тайны центральной зоны млечного пути: новая гипотеза о природе тёмной материи 15183Генетическая скудость европейского картофеля: прорыв в анализе старых сортов 15182Золотые наночастицы против слепоты: новый взгляд на лечение макулярной дегенерации 15181Как искусственный интеллект меняет молекулярный дизайн с помощью оценки неопределённости? 15180Как ATG-9 управляет восстановлением лизосом и может ли это изменить подход к лечению... 15179Почему метеорные дожди так непредсказуемы? 15178Как менялось предназначение уникального рога из мезолита в Швеции? 15177Стагнация промысла и взлёт акваферм: как меняется рыбная отрасль Малайзии 15176Что скрывает глубина: почему впервые удалось заснять детёныша колоссального кальмара? 15175Какие тайны древней воды Марса открывают кристаллы из кратера Езеро? 15174Рекордная засуха угрожает Германии: риски для урожая, лесов и экономики