Ssylka

Возможно ли управлять химическими реакциями светом?

Группа исследователей, включающая теоретиков из Калифорнийского университета в Сан-Диего (UC San Diego), совершила прорыв в понимании того, как можно воздействовать на химические реакции. В результате совместной экспериментально-теоретической работы, ученые обнаружили, что инфракрасное излучение, заключенное в оптической полости, способно гораздо эффективнее влиять на химические реакции, чем традиционные методы нагрева, такие как конвекция и теплопроводность.
Возможно ли управлять химическими реакциями светом?
Изображение носит иллюстративный характер

В центре внимания исследователей оказался процесс термической дегидратации – удаление воды из вещества под воздействием тепла. В качестве модельного объекта был выбран пентагидрат сульфата меди – неорганический кристалл, химическая реакция дегидратации которого хорошо изучена. Для усиления воздействия инфракрасного излучения была применена оптическая полость, предназначенная для удержания и концентрации инфракрасных световых волн.

Ключевым открытием стало наблюдение явления вибрационного связывания света и вещества, приводящего к образованию поляритонов. Поляритоны – это квазичастицы, возникающие при сильном взаимодействии света и вещества, в данном случае – инфракрасного излучения и колебаний молекул кристаллической решетки пентагидрата сульфата меди.

Удивительно, но формирование поляритонов привело к значительному снижению температуры, необходимой для начала процесса дегидратации. В ходе экспериментов было зафиксировано снижение температуры до 14 градусов Цельсия по сравнению с обычными методами нагрева. Это означает, что реакция дегидратации могла быть инициирована при значительно более низких температурах, чем считалось ранее.

Объяснение этого эффекта ученые видят в механизме радиационного переноса энергии. В отличие от конвекции и теплопроводности, где тепло передается за счет движения частиц или их непосредственного контакта, радиационный перенос энергии осуществляется путем излучения и поглощения фотонов. В оптической полости, инфракрасное излучение, испускаемое более горячей областью, эффективно поглощается более холодной областью кристалла, обеспечивая целенаправленный и эффективный нагрев.

Важно отметить, что механизм радиационного переноса тепла в контексте химических реакций ранее оставался практически незамеченным. Традиционные подходы к управлению химическими реакциями, основанные на конвекции и теплопроводности, не учитывали потенциал инфракрасного излучения и оптических полостей для селективного воздействия на вещества.

Результаты этого исследования имеют фундаментальное значение для понимания процессов теплопередачи на микроскопическом уровне и открывают новые перспективы в управлении термохимическими процессами. Созданный механизм модификации термохимических процессов с использованием оптических полостей может стать основой для разработки принципиально новых каталитических систем.

Такие каталитические системы смогут использовать взаимодействие света и вещества для целенаправленного контроля не только над химическими реакциями, но и над оптоэлектронными процессами. Это открывает путь к созданию высокоэффективных и селективных катализаторов, способных работать при более низких температурах и с меньшими энергетическими затратами.

Публикация об этом открытии, подробно описывающая все детали исследования, вышла в престижном научном журнале Nature Chemistry. Статья в этом издании подтверждает высокий уровень и значимость проведенной работы для мирового научного сообщества. Открытие команды исследователей из UC San Diego может стать отправной точкой для целого ряда новых исследований в области химической кинетики и катализа.


Новое на сайте

18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude