Ssylka

Природная катапульта: как язык хамелеона научит роботов ловить тромбы и космический мусор

8 сентября в журнале Current Biology была опубликована работа ученых из Университета Южной Флориды (USF), которая представляет единую механическую модель для баллистического языка хамелеонов и саламандр. Биолог Юй Цзэн и специалист по физиологии животных Стивен Дебан установили, что эти два вида, не встречающиеся в природе, независимо друг от друга разработали идентичный механизм для захвата добычи.
Природная катапульта: как язык хамелеона научит роботов ловить тромбы и космический мусор
Изображение носит иллюстративный характер

Эти животные являются абсолютными экологическими незнакомцами. Хамелеоны обитают в теплом климате, на ветвях деревьев и кустарников. Саламандры предпочитают влажную, затененную среду, такую как гниющая листва или темные пещеры. Несмотря на это, эволюция привела их к одинаковой архитектуре тела для молниеносного выброса языка.

Механизм работает по принципу рогатки. Животное сжимает мускулатуру во рту, что приводит в движение конический костный стержень внутри языка. Такая конструкция позволяет отделить мышечное действие от движения скелета, обеспечивая сверхэффективную передачу энергии, которая считается одной из самых продуктивных в движениях позвоночных.

Скорость выброса языка достигает 16 футов в секунду (около 4,9 м/с). Механизм остается эффективным в 30-кратном диапазоне размеров тела животных, что доказывает его универсальность и масштабируемость.

Данное исследование стало результатом анализа видеоматериалов, которые собирались более десяти лет. Это первое в истории прямое сравнение механики языка хамелеонов и саламандр. Юй Цзэн ранее занимался адаптацией механики полета насекомых для технологических нужд, а Стивен Дебан является экспертом в физиологии животных.

Это открытие предоставляет масштабируемый чертеж для создания технологий, использующих мягкие или гибкие материалы, повторяя решения, найденные природой.

В биомедицине рассматривается создание крошечных устройств, вооруженных искусственными баллистическими языками. Их задачей станет очистка кровеносных сосудов от тромбов.

В зонах бедствий тот же принцип может быть использован для создания инструментов, способных извлекать недоступные объекты или людей из-под завалов.

В аэрокосмической отрасли эта технология предлагает возможное решение для захвата космического мусора, вращающегося на орбите Земли.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...