Ssylka

Почему на земле находят так мало водоносных метеоритов, если астероиды ими богаты?

Метеориты считаются одними из главных источников информации о ранних этапах формирования Солнечной системы. Особенно ценной является группа метеоритов, известных как углистые хондриты. Эти породы отличаются высоким содержанием воды, углерода и органических соединений, причем вода в них находится в связанном состоянии, встроенная в кристаллические структуры минералов. Существует гипотеза, что именно углистые хондриты сыграли ключевую роль в доставке воды на раннюю Землю.
Почему на земле находят так мало водоносных метеоритов, если астероиды ими богаты?
Изображение носит иллюстративный характер

Пространственные объекты, несущие эти древние вещества, называют астероидами, метеороидами или кометами в зависимости от их размера и состава. После падения на Землю они именуются метеоритами. При этом среди астероидов, наблюдаемых телескопами, большинство имеет водоносный и углеродистый состав. Модели предсказывают, что более половины всех падающих на Землю метеоритов должны быть углистыми. Однако факты говорят об обратном: менее 4% метеоритов, найденных на поверхности планеты, относятся к этой группе.

Этот парадокс стал предметом исследования, опубликованного 14 апреля 2025 года в журнале Nature Astronomy. В работе, выполненной группой планетологов, поставлен вопрос: «Куда делись углистые хондриты?»

Ключевую роль в поиске ответа сыграли миссии по возвращению образцов с астероидов. Американский аппарат OSIRIS-REx доставил на Землю материал с астероида Бенну, а японский зонд Hayabusa2 — с астероида Рюгу. Оба аппарата собрали нетронутые, не подвергшиеся земной загрязнённости образцы, богатые водой и органикой. Как отмечают учёные, такие миссии дают «прямое окно в строительные блоки Солнечной системы и истоки жизни», позволяя анализировать состав первичных астероидов без влияния земной атмосферы, осадков и микроорганизмов.

До недавнего времени основной причиной редкости углистых метеоритов на Земле считалась фильтрация атмосферой: более хрупкие породы попросту не выживают при падении сквозь плотные слои воздуха. Углистые хондриты действительно менее прочны и легче разрушаются при нагреве и ударах. Типичный путь любого метеорита начинается с столкновения астероидов, в результате чего возникают обломки размером от сантиметров до метров — метеороиды. Такие малые тела невозможно отследить телескопами, пока они не приближаются к Земле.

Современные исследовательские группы используют атмосферу нашей планеты как гигантский детектор метеороидов. По оценкам, ежегодно на Землю падает около 5 000 тонн микрометеоритов и от 4 000 до 10 000 крупных метеоритов размером с мяч для гольфа и больше — это более двадцати падений в сутки. Для их отслеживания применяются цифровые камеры, высокочувствительные датчики и автоматические системы, позволяющие наблюдать метеоры и болиды в режиме реального времени.

Международные сети наблюдения, такие как FRIPON (координируется из Франции, охватывает 15 стран) и Global Fireball Observatory (основана на австралийской Desert Fireball Network), предоставили данные о почти 8 000 падениях, зафиксированных 19 сетями в 39 странах. Сравнивая метеороиды, сгоревшие в атмосфере, и те, что долетели до поверхности, исследователи выясняют, какие именно типы астероидных обломков способны пережить падение.

Новое открытие, сделанное на основе этих наблюдений, заключается в особой роли Солнца. Большинство астероидных обломков не достигают Земли вовсе — они разрушаются ещё в космосе. Углистые породы особенно уязвимы: при пересечении орбит, проходящих близко к Солнцу, они подвергаются резким температурным перепадам. Как отмечают исследователи, «термические трещины» постепенно разбивают хрупкие водоносные породы, удаляя их из числа потенциальных кандидатов на встречу с Землёй. В результате лишь 30–50% уцелевших тел выдерживают атмосферный вход и превращаются в метеориты, а среди них преобладают более прочные, менее углистые разновидности.

Таким образом, дефицит углистых метеоритов обусловлен не столько фильтрацией атмосферой, сколько разрушением в глубоких слоях космоса. Только самые стойкие обломки способны преодолеть двойной барьер — солнечного нагрева и входа в атмосферу.

Для дальнейших исследований учёные отмечают необходимость совершенствования телескопических методов обнаружения объектов до их столкновения с Землёй, создания более точных моделей разрушения метеороидов в атмосфере, а также разработки новых способов определения их состава, например, по цвету метеоров. Только так удастся точно оценить вклад различных типов астероидов в доставку воды и органики на нашу планету.


Новое на сайте

18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года 18869Реконструкция черепа возрастом 1,5 миллиона лет меняет представление об эволюции Homo...