Почему на земле находят так мало водоносных метеоритов, если астероиды ими богаты?

Метеориты считаются одними из главных источников информации о ранних этапах формирования Солнечной системы. Особенно ценной является группа метеоритов, известных как углистые хондриты. Эти породы отличаются высоким содержанием воды, углерода и органических соединений, причем вода в них находится в связанном состоянии, встроенная в кристаллические структуры минералов. Существует гипотеза, что именно углистые хондриты сыграли ключевую роль в доставке воды на раннюю Землю.
Почему на земле находят так мало водоносных метеоритов, если астероиды ими богаты?
Изображение носит иллюстративный характер

Пространственные объекты, несущие эти древние вещества, называют астероидами, метеороидами или кометами в зависимости от их размера и состава. После падения на Землю они именуются метеоритами. При этом среди астероидов, наблюдаемых телескопами, большинство имеет водоносный и углеродистый состав. Модели предсказывают, что более половины всех падающих на Землю метеоритов должны быть углистыми. Однако факты говорят об обратном: менее 4% метеоритов, найденных на поверхности планеты, относятся к этой группе.

Этот парадокс стал предметом исследования, опубликованного 14 апреля 2025 года в журнале Nature Astronomy. В работе, выполненной группой планетологов, поставлен вопрос: «Куда делись углистые хондриты?»

Ключевую роль в поиске ответа сыграли миссии по возвращению образцов с астероидов. Американский аппарат OSIRIS-REx доставил на Землю материал с астероида Бенну, а японский зонд Hayabusa2 — с астероида Рюгу. Оба аппарата собрали нетронутые, не подвергшиеся земной загрязнённости образцы, богатые водой и органикой. Как отмечают учёные, такие миссии дают «прямое окно в строительные блоки Солнечной системы и истоки жизни», позволяя анализировать состав первичных астероидов без влияния земной атмосферы, осадков и микроорганизмов.

До недавнего времени основной причиной редкости углистых метеоритов на Земле считалась фильтрация атмосферой: более хрупкие породы попросту не выживают при падении сквозь плотные слои воздуха. Углистые хондриты действительно менее прочны и легче разрушаются при нагреве и ударах. Типичный путь любого метеорита начинается с столкновения астероидов, в результате чего возникают обломки размером от сантиметров до метров — метеороиды. Такие малые тела невозможно отследить телескопами, пока они не приближаются к Земле.

Современные исследовательские группы используют атмосферу нашей планеты как гигантский детектор метеороидов. По оценкам, ежегодно на Землю падает около 5 000 тонн микрометеоритов и от 4 000 до 10 000 крупных метеоритов размером с мяч для гольфа и больше — это более двадцати падений в сутки. Для их отслеживания применяются цифровые камеры, высокочувствительные датчики и автоматические системы, позволяющие наблюдать метеоры и болиды в режиме реального времени.

Международные сети наблюдения, такие как FRIPON (координируется из Франции, охватывает 15 стран) и Global Fireball Observatory (основана на австралийской Desert Fireball Network), предоставили данные о почти 8 000 падениях, зафиксированных 19 сетями в 39 странах. Сравнивая метеороиды, сгоревшие в атмосфере, и те, что долетели до поверхности, исследователи выясняют, какие именно типы астероидных обломков способны пережить падение.

Новое открытие, сделанное на основе этих наблюдений, заключается в особой роли Солнца. Большинство астероидных обломков не достигают Земли вовсе — они разрушаются ещё в космосе. Углистые породы особенно уязвимы: при пересечении орбит, проходящих близко к Солнцу, они подвергаются резким температурным перепадам. Как отмечают исследователи, «термические трещины» постепенно разбивают хрупкие водоносные породы, удаляя их из числа потенциальных кандидатов на встречу с Землёй. В результате лишь 30–50% уцелевших тел выдерживают атмосферный вход и превращаются в метеориты, а среди них преобладают более прочные, менее углистые разновидности.

Таким образом, дефицит углистых метеоритов обусловлен не столько фильтрацией атмосферой, сколько разрушением в глубоких слоях космоса. Только самые стойкие обломки способны преодолеть двойной барьер — солнечного нагрева и входа в атмосферу.

Для дальнейших исследований учёные отмечают необходимость совершенствования телескопических методов обнаружения объектов до их столкновения с Землёй, создания более точных моделей разрушения метеороидов в атмосфере, а также разработки новых способов определения их состава, например, по цвету метеоров. Только так удастся точно оценить вклад различных типов астероидов в доставку воды и органики на нашу планету.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка