Исследования, опубликованные в журнале JGR Atmospheres, выявляют связь между космическими лучами и возникновением молний в грозовых облаках. Высокоэнергетичные частицы, прибывающие из космоса, оказываются ключевыми инициаторами молниевых разрядов.

Традиционное понимание возникновения молний основывалось на разделении положительных и отрицательных зарядов в облаках, однако наблюдения указывают, что для мгновенного разряда требуется дополнительный толчок.
Ученые из Лос-Аламосской национальной лаборатории под руководством Сяо Сюань-Мин пришли к выводу, что космические лучи, являясь источником высокоэнергетичных электронов и позитронов, играют решающую роль в инициировании молний.
Электроны и позитроны, продуцируемые космическими лучами, испытывают дифференциальное воздействие магнитного поля Земли и электрического поля в облаке, что приводит к формированию наклонного разрядного тока и объясняет различие между разрядами с положительной и отрицательной полярностью.
Новейшая система BIMAP-3D (Broadband Radio Frequency Interferometric Mapping and Polarization system), разработанная в 2021 году Лос-Аламосской национальной лабораторией, обеспечивает высокоточное 3D-картографирование источников молний и фиксацию поляризации разрядов.
Оборудование включает две станции, расположенные на расстоянии примерно семи миль, каждая из которых оснащена четырьмя антенными установками, собранными в Y-образную интерферометрическую решетку. Объединение двумерных карт с обеих станций позволяет получить полноценное трехмерное изображение молнии и проследить путь ее развития.
Система фиксирует не только местоположение разряда, но и направление тока внутри облака. «Эта система уникальна, потому что она одновременно обнаруживает поляризацию в 3D, позволяя нам наблюдать не только место разряда молнии, но и направление тока разряда внутри облака», – отметил Сяо Сюань-Мин.
Практическая значимость исследования определяется его вкладом в национальную безопасность. Сигналы молний в оптическом и радиочастотном диапазонах могут имитировать признаки ядерного взрыва, поэтому совершенствование методов дифференциации этих сигналов способствует развитию приборов для мониторинга ядерных испытаний и улучшает систему глобальной безопасности.

Изображение носит иллюстративный характер
Традиционное понимание возникновения молний основывалось на разделении положительных и отрицательных зарядов в облаках, однако наблюдения указывают, что для мгновенного разряда требуется дополнительный толчок.
Ученые из Лос-Аламосской национальной лаборатории под руководством Сяо Сюань-Мин пришли к выводу, что космические лучи, являясь источником высокоэнергетичных электронов и позитронов, играют решающую роль в инициировании молний.
Электроны и позитроны, продуцируемые космическими лучами, испытывают дифференциальное воздействие магнитного поля Земли и электрического поля в облаке, что приводит к формированию наклонного разрядного тока и объясняет различие между разрядами с положительной и отрицательной полярностью.
Новейшая система BIMAP-3D (Broadband Radio Frequency Interferometric Mapping and Polarization system), разработанная в 2021 году Лос-Аламосской национальной лабораторией, обеспечивает высокоточное 3D-картографирование источников молний и фиксацию поляризации разрядов.
Оборудование включает две станции, расположенные на расстоянии примерно семи миль, каждая из которых оснащена четырьмя антенными установками, собранными в Y-образную интерферометрическую решетку. Объединение двумерных карт с обеих станций позволяет получить полноценное трехмерное изображение молнии и проследить путь ее развития.
Система фиксирует не только местоположение разряда, но и направление тока внутри облака. «Эта система уникальна, потому что она одновременно обнаруживает поляризацию в 3D, позволяя нам наблюдать не только место разряда молнии, но и направление тока разряда внутри облака», – отметил Сяо Сюань-Мин.
Практическая значимость исследования определяется его вкладом в национальную безопасность. Сигналы молний в оптическом и радиочастотном диапазонах могут имитировать признаки ядерного взрыва, поэтому совершенствование методов дифференциации этих сигналов способствует развитию приборов для мониторинга ядерных испытаний и улучшает систему глобальной безопасности.