Ssylka

Как германий помогает разгадать тайну исчезновения антиматерии?

В научном мире германий занимает особое место. Этот химический элемент, предсказанный Дмитрием Менделеевым в 1869 году и обнаруженный Клеменсом Винклером в 1886 году, стал ключевым материалом для создания высокоточных детекторов элементарных частиц.
Как германий помогает разгадать тайну исчезновения антиматерии?
Изображение носит иллюстративный характер

История применения германия в физике началась во время Второй мировой войны, когда его использовали в точечно-контактных диодах для радаров. В 1950-70-х годах германий стал важным полупроводником в транзисторах, а сегодня он применяется в оптоволокне, солнечных панелях и приборах ночного видения.

Революционный прорыв в использовании германия произошел в 1960-х годах с разработкой первых высокочистых германиевых детекторов. Эти устройства, созданные из монокристаллов германия, обеспечивают исключительную точность измерения энергии частиц и высокую эффективность детектирования.

Значительный вклад в развитие технологии внес Дэвид Рэдфорд, руководитель секции фундаментальной ядерной и частичной физики в Национальной лаборатории Оук-Ридж (ORNL). В 1990-х годах он разработал «инвертированный коаксиальный» подход, существенно улучшивший возможности детекторов.

Сегодня крупнейшим проектом в этой области является LEGEND-1000 – масштабный эксперимент по изучению безнейтринного двойного бета-распада. В проекте, возглавляемом ORNL, участвуют более 250 исследователей из примерно 50 международных институтов.

Исследования с использованием германиевых детекторов направлены на решение фундаментальных вопросов физики: почему наблюдается асимметрия между материей и антиматерией во Вселенной, как объяснить расхождения между теорией Большого взрыва и Стандартной моделью физики частиц.

Важные эксперименты проводятся в нескольких ведущих научных центрах. Среди них – демонстратор Majorana в подземной исследовательской лаборатории Сэнфорда (Южная Дакота), европейский эксперимент GERDA и проекты GRETA и GRETINA. Особую роль играет Facility for Rare Isotope Beams (FRIB) в Университете штата Мичиган, где исследуются редкие изотопы.

Научный сотрудник ORNL Джеймс «Митч» Олмонд и его коллеги используют германиевые детекторы для изучения структуры атомного ядра, процессов нуклеосинтеза и поведения нейтрино. Эти исследования продолжают работу, начатую Эрнестом Резерфордом, который открыл атомное ядро в 1911 году.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года