Ssylka

Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего

В январском выпуске Nature Materials 2025 года описано революционное достижение ученых из Брукхейвенской национальной лаборатории – создание метода визуализации спиновых волн в реальном времени на наноуровне с беспрецедентным временным и пространственным разрешением.
Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего
Изображение носит иллюстративный характер

Группа исследователей под руководством старшего физика Йимея Чжу разработала уникальную технологию, объединяющую модифицированный электронный микроскоп с микроволновой технологией. «Это первый случай наблюдения спиновых волн с помощью электронной микроскопии», – отмечает ведущий автор исследования Чухан Лю, аспирант Университета Стони Брук.

Спинтроника, изучающая как заряд, так и спин электронов, и её подраздел магноника, исследующий коллективное поведение спинов, открывают путь к энергоэффективным вычислениям и квантовым устройствам. Однако до сих пор существовала проблема изучения спиновых волн на наноуровне из-за недостаточной чувствительности и скорости существующих методов микроскопии.

Исследователи создали и стабилизировали особую топологическую магнитную структуру в тонких пленках пермаллоя, используя литографическое структурирование и микроволновую технологию. В пленках наблюдались спиновые вихри, антивихри и магнитные доменные стенки. При подаче радиочастотного электрического сигнала через антенну генерировались, распространялись и интерферировали спиновые волны.

Ключевым техническим достижением стала разработка ультрабыстрого электронного импульсного генератора, созданного совместно с компанией Euclid Techlabs. Устройство получило престижную награду R&D 100 в 2019 году и премию за инновации в микроскопии в 2020 году. По словам физика Спенсера Рейсбика, синхронизация и выравнивание сотен изображений субмикронного масштаба оказались «сложнее, чем поиск иголки в стоге сена».

Новая технология имеет решающее значение для развития нейроморфных вычислений, стремящихся воспроизвести энергоэффективность и параллельную обработку данных, свойственную человеческому мозгу. «Конечная цель – понять и реализовать функциональность, подобную мозгу, в искусственных системах», – поясняет Йимей Чжу.

Метод открывает новые горизонты в электронной микроскопии, позволяя впервые захватывать динамику магнонов на гигагерцовых частотах, что соответствует современным беспроводным технологиям и квантовым кубитам. Это достижение создает мост между фундаментальными исследованиями и практическими промышленными применениями в вычислительной технике будущего.


Новое на сайте

19033Обнаружение древнейшей подтвержденной спиральной галактики с перемычкой COSMOS-74706 19032Микрогравитация на мкс превратила вирусы в эффективных убийц устойчивых бактерий 19031Как древние римляне управляли капиталом, чтобы обеспечить себе пассивный доход и защитить... 19030Миссия Pandora: новый инструмент NASA для калибровки данных телескопа «Джеймс Уэбб» 19029Телескоп Джеймс Уэбб запечатлел «неудавшиеся звезды» в звездном скоплении вестерлунд 2 19028Как «пенопластовые» планеты в системе V1298 Tau стали недостающим звеном в понимании... 19027Возможно ли одновременное глобальное отключение всего мирового интернета? 19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и...