Ssylka

Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего

В январском выпуске Nature Materials 2025 года описано революционное достижение ученых из Брукхейвенской национальной лаборатории – создание метода визуализации спиновых волн в реальном времени на наноуровне с беспрецедентным временным и пространственным разрешением.
Революционный прорыв в визуализации спиновых волн открывает путь к компьютерам будущего
Изображение носит иллюстративный характер

Группа исследователей под руководством старшего физика Йимея Чжу разработала уникальную технологию, объединяющую модифицированный электронный микроскоп с микроволновой технологией. «Это первый случай наблюдения спиновых волн с помощью электронной микроскопии», – отмечает ведущий автор исследования Чухан Лю, аспирант Университета Стони Брук.

Спинтроника, изучающая как заряд, так и спин электронов, и её подраздел магноника, исследующий коллективное поведение спинов, открывают путь к энергоэффективным вычислениям и квантовым устройствам. Однако до сих пор существовала проблема изучения спиновых волн на наноуровне из-за недостаточной чувствительности и скорости существующих методов микроскопии.

Исследователи создали и стабилизировали особую топологическую магнитную структуру в тонких пленках пермаллоя, используя литографическое структурирование и микроволновую технологию. В пленках наблюдались спиновые вихри, антивихри и магнитные доменные стенки. При подаче радиочастотного электрического сигнала через антенну генерировались, распространялись и интерферировали спиновые волны.

Ключевым техническим достижением стала разработка ультрабыстрого электронного импульсного генератора, созданного совместно с компанией Euclid Techlabs. Устройство получило престижную награду R&D 100 в 2019 году и премию за инновации в микроскопии в 2020 году. По словам физика Спенсера Рейсбика, синхронизация и выравнивание сотен изображений субмикронного масштаба оказались «сложнее, чем поиск иголки в стоге сена».

Новая технология имеет решающее значение для развития нейроморфных вычислений, стремящихся воспроизвести энергоэффективность и параллельную обработку данных, свойственную человеческому мозгу. «Конечная цель – понять и реализовать функциональность, подобную мозгу, в искусственных системах», – поясняет Йимей Чжу.

Метод открывает новые горизонты в электронной микроскопии, позволяя впервые захватывать динамику магнонов на гигагерцовых частотах, что соответствует современным беспроводным технологиям и квантовым кубитам. Это достижение создает мост между фундаментальными исследованиями и практическими промышленными применениями в вычислительной технике будущего.


Новое на сайте

18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда