Ssylka

Как ДНК-гидрогели совершенствуют доставку лекарств в организме?

Исследователи из Токийского университета науки разработали инновационный подход к созданию ДНК-гидрогелей, способных значительно улучшить системы доставки лекарственных препаратов. Этот прорыв может изменить методы лечения различных заболеваний.
Как ДНК-гидрогели совершенствуют доставку лекарств в организме?
Изображение носит иллюстративный характер

Гидрогели представляют собой полимерные материалы с трехмерной сетчатой структурой, способные удерживать большое количество воды. Их главное преимущество заключается в биосовместимости, способности к биоразложению и простоте введения в организм в качестве инъекционного каркаса для доставки биоактивных веществ.

Исследовательская группа под руководством профессора Макия Нишикава, в которую входят Цзянь Цзинь, доцент Шоко Итакура и профессор Косуке Кусамори, поставила цель минимизировать и оптимизировать ДНК-наноструктуры для создания стабильных гидрогелей с использованием меньшего количества нуклеиновых кислот.

Ученые разработали особую структуру ДНК в форме «такуми», состоящую всего из двух олигодезоксинуклеотидов (ОДН). Каждый ОДН содержит палиндромный стебель длиной 8-18 нуклеотидов и две когезивные части по обеим сторонам стебля, разделенные тимидиновым спейсером.

В ходе оптимизации было установлено, что для формирования стабильных гидрогелевых единиц достаточно стебля длиной 12 нуклеотидов, а 10-нуклеотидные когезивные части обеспечивают эффективную гибридизацию. Наилучшие результаты показала конструкция "12s-(T-10c)2-ODN", требующая всего 68 нуклеотидов для формирования гидрогелевой единицы.

Эксперименты in vivo с противоопухолевым препаратом доксорубицином продемонстрировали, что оптимизированный ДНК-гидрогель сохраняется в организме мышей не менее 168 часов после введения. Это обеспечивает длительное локальное высвобождение лекарства и усиливает противоопухолевый эффект.

По словам профессора Нишикава, оптимизированный ДНК-гидрогель на основе структуры "12s-(T-10c)2" показал более длительное удержание по сравнению с гексаподна-основанным ДНК-гидрогелем при введении мышам. Это открытие демонстрирует, как минимальные ДНК-единицы могут собираться в биосовместимые гидрогели с высоким временем удержания и устойчивым высвобождением лекарств, открывая путь к перспективным таргетным биомедицинским терапиям.


Новое на сайте

18685Критическая уязвимость React Server Components с максимальным рейтингом опасности... 18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в...