Ssylka

Как физики научились стабилизировать сверхпроводимость при обычном давлении?

Исследователи из Техасского центра сверхпроводимости при Университете Хьюстона совершили значительный прорыв в области сверхпроводящих материалов. Профессора Ляндзи Дэн и Пол Чинг-Ву Чу разработали инновационный метод стабилизации сверхпроводящих состояний при нормальном атмосферном давлении.
Как физики научились стабилизировать сверхпроводимость при обычном давлении?
Изображение носит иллюстративный характер

Ученые сосредоточили свое внимание на материале Bi0.5Sb1.5Te3 (BST). Еще в 2001 году было замечено, что высокое давление меняет топологию поверхности Ферми этого материала, улучшая его термоэлектрические свойства. Это наблюдение указало на потенциальную связь между давлением, топологией и сверхпроводимостью.

Главной проблемой в исследованиях сверхпроводимости всегда было то, что многие высокотемпературные сверхпроводники работают только при высоком давлении, что делает их непрактичными для изучения и использования. Как отмечал материаловед Пол Дювез, большинство важных для промышленности твердых тел существует в метастабильном состоянии.

Прорывом стала разработка метода, названного Протоколом закалки под давлением (PQP). Этот протокол позволяет сохранять фазы материала, обычно наблюдаемые только при высоком давлении, в стабильном состоянии при нормальном атмосферном давлении.

«Этот эксперимент наглядно демонстрирует возможность стабилизации фазы, индуцированной высоким давлением, при атмосферном давлении через тонкий электронный переход без изменения симметрии», – объясняет профессор Чу. По его словам, это открытие должно помочь в поиске сверхпроводников с более высокими температурами перехода.

Профессор Дэн отмечает еще один важный аспект открытия: «Интересно, что эксперимент выявил новый подход к обнаружению состояний материи, которые изначально не существуют при атмосферном давлении или даже в условиях высокого давления. PQP оказался мощным инструментом для исследования и создания неизученных областей фазовых диаграмм материалов».

Это достижение открывает путь к революционным энергоэффективным технологиям, основанным на высокотемпературной сверхпроводимости при нормальных условиях. Исследователи продолжают поиск сверхпроводников с более высокими температурами перехода и экспериментируют с применением PQP к различным материалам для обнаружения и стабилизации других уникальных фаз, индуцированных высоким давлением.


Новое на сайте

18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда