Ssylka

Способен ли крошечный фотонный чип изменить всю оптику будущего?

Исследователи из Университета Шанхая науки и технологий (USST) представили разработку под названием "This AI chip is the size of a grain of salt", о которой свидетельствует иллюстрация по адресу . Основная задача этого устройства — обрабатывать данные, передаваемые по оптоволоконным кабелям на скорости света, без задержек на электрическую декодировку.
Способен ли крошечный фотонный чип изменить всю оптику будущего?
Изображение носит иллюстративный характер

В отличие от стандартных систем, использующих энергоёмкое оборудование для расшифровки фотонных сигналов, новый чип опирается на принципы пассивных нейронных сетей. Его разработка вдохновлена концепцией all-optical diffractive deep neural network, которую в 2018 году предложили учёные из Университета Калифорнии в Лос-Анджелесе (UCLA). Суть метода сводится к использованию особым образом структурированных полимерных слоёв, способных перенаправлять потоки фотонов для вычислительных операций.

По данным, опубликованным в журнале Nature Photonics и отмеченным изданием New Scientist, команда из USST создала "пассивную, хорошо обученную нейронную сеть", которая физически манипулирует светом для вычислений. Размер такого чипа сопоставим с зерном соли. Его малые габариты позволяют интегрировать устройство к концу волоконно-оптической линии, где фотонный сигнал уже несёт зашифрованную информацию.

Физическую основу обеспечил метод "трёхмерной двухфотонной нанолитографии", применяемый для 3D-печати сверхтонких полимерных компонентов. Подобная конструкция помогает чипу выполнять распознавание оптических сигналов прямо в процессе передачи. Эксперименты включали отправку фотонов, несущих зашифрованные изображения цифр, с последующим их анализом чипом для восстановления исходных образов.

Тестовые результаты продемонстрировали высокую точность и скорость работы системы: время обработки измеряется триллионными долями секунды, а энергопотребление в тысячи раз меньше по сравнению с традиционными методами вычислительной нейронной обработки. Эти показатели особенно важны в условиях растущего объёма передаваемой информации и возросших требований к энергоэффективности.

Некоторые ограничения связаны с тем, что каждому чипу необходима индивидуальная настройка под конкретную задачу, а дефекты в его микроскопических слоях могут приводить к отклонениям в работе. Тем не менее разработчики прогнозируют применение такого подхода в эндоскопии и, возможно, в будущем — в области квантовых вычислений. По их словам, технология обещает открыть невиданные ранее возможности.

Сочетание крошечного формата, способности работать с фотонными потоками и пониженных энергорастрат делают эти чипы ключевым шагом вперёд на пути к более быстрым, эффективным и компактным системам анализа больших массивов оптических данных. Исследователи полагают, что дальнейшая оптимизация обеспечит "беспрецедентные функциональные возможности" для фотонных решений завтрашнего дня.


Новое на сайте

16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над...