Ssylka

Оптимизация производительности LLM: ключевые стратегии

Для ускорения инференса больших языковых моделей (LLM) применяют дистилляцию знаний, которая позволяет переносить знания из большой LLM в компактную модель, сохраняя при этом значительную часть ее возможностей. Существуют различные методы дистилляции, такие как Hard-label, Soft-label и On-policy, каждый из которых имеет свои особенности и преимущества. On-policy дистилляция особенно эффективна, поскольку она решает проблему смещения воздействия, возникающую из-за обучения на примерах, сгенерированных моделью-учителем.
Оптимизация производительности LLM: ключевые стратегии
Изображение носит иллюстративный характер

Квантизация – еще один важный инструмент, который позволяет сократить объемы потребляемых вычислительных ресурсов и повысить скорость инференса. В частности, использование форматов FP8 (E4M3, E3M4) для квантизации активаций может обеспечить lossless-результаты по качеству и ускорение до 1.4x по сравнению с 16-битным инференсом. SpinQuant, метод W4A4-квантизации, также демонстрирует SOTA-результаты на бенчмарках качества и ускорение 2.7x на этапе генерации.

Метод спекулятивного декодирования EAGLE отличается от привычной схемы несколькими аспектами. Передача скрытых состояний последнего слоя исходной модели в draft-голову и обучение ее их же предсказывать на выход позволяет итоговой модели использовать больше информации для «угадывания» будущих токенов и в результате даёт больший Acceptance Rate. Древовидные драфты значительно увеличивают среднее количество принятых токенов, поскольку по факту дают возможность верифицировать сразу несколько цепочек, причём делать это эффективно и почти настолько же быстро, как с одной цепочкой.

Оптимизация KV-cache играет важную роль в задачах с длинным контекстом. Квантизация KV-cache позволяет линейно сжать его в два раза для 8-битной квантизации и в четыре – для 4-битной по сравнению с FP16. KV-cache reuse, PagedAttention и Dynamic Memory Compression (DMC) – другие эффективные техники сжатия и управления KV-cache. Кроме того, использование Continuous Batching и ragged tensors может дополнительно повысить утилизацию GPU и ускорить инференс.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...