Ssylka

Эффективная оценка LLM: метрики, инструменты и стратегии

Оценка больших языковых моделей (LLM) – это непрерывный итеративный процесс, критически важный для оптимизации производительности и практического применения LLM-систем. Необходимо различать оценку LLM-модели и LLM-системы, учитывая, что ответственность за качество работы системы лежит как на модели, так и на разработчиках, подбирающих промты, механизмы извлечения данных и архитектуру.
Эффективная оценка LLM: метрики, инструменты и стратегии
Изображение носит иллюстративный характер

Офлайн-оценка, проводимая на заранее подготовленных датасетах, важна для контроля качества перед развертыванием, выявления проблем, и проведения регрессионного анализа. Для повышения масштабируемости процесса оценки можно использовать саму LLM для генерации оценочных датасетов. Онлайн-оценка позволяет анализировать производительность модели в реальных условиях эксплуатации, используя данные пользователей и обратную связь.

Разнообразие фреймворков и инструментов оценки, таких как Azure AI Studio Evaluation, Prompt Flow, Weights & Biases, LangSmith, TruLens, Vertex AI Studio, Amazon Bedrock, DeepEval, Parea AI, предлагает разработчикам широкий спектр возможностей для всестороннего анализа. При этом важна адаптация метрик оценки под конкретные сценарии применения, например, машинный перевод (BLEU, METEOR), анализ настроений (точность, полнота, F1-оценка), суммаризация (ROUGE, BERTScore), Q&A (QAEval, QAFactEval), NER (точность, полнота, InterpretEval), Text-to-SQL (точность полного соответствия, точность выполнения) и система извлечения RAG (верность, релевантность ответа, точность контекста).

Ответственное использование ИИ (RAI) имеет первостепенное значение, требующее оценки LLM-приложений с помощью заранее подготовленных вопросов по категориям, таким как вредоносный контент, справедливость, регулирование, конфиденциальность, галлюцинации и другие. Необходимо учитывать этические аспекты, минимизировать риски, и обеспечивать безопасное использование LLM.


Новое на сайте

16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над... 16928Может ли искусство напрямую очищать экосистемы от вредителей? 16927Вирусное наследие в геноме человека оказалось ключевым регулятором генов