Ssylka

Эффективная оценка LLM: метрики, инструменты и стратегии

Оценка больших языковых моделей (LLM) – это непрерывный итеративный процесс, критически важный для оптимизации производительности и практического применения LLM-систем. Необходимо различать оценку LLM-модели и LLM-системы, учитывая, что ответственность за качество работы системы лежит как на модели, так и на разработчиках, подбирающих промты, механизмы извлечения данных и архитектуру.
Эффективная оценка LLM: метрики, инструменты и стратегии
Изображение носит иллюстративный характер

Офлайн-оценка, проводимая на заранее подготовленных датасетах, важна для контроля качества перед развертыванием, выявления проблем, и проведения регрессионного анализа. Для повышения масштабируемости процесса оценки можно использовать саму LLM для генерации оценочных датасетов. Онлайн-оценка позволяет анализировать производительность модели в реальных условиях эксплуатации, используя данные пользователей и обратную связь.

Разнообразие фреймворков и инструментов оценки, таких как Azure AI Studio Evaluation, Prompt Flow, Weights & Biases, LangSmith, TruLens, Vertex AI Studio, Amazon Bedrock, DeepEval, Parea AI, предлагает разработчикам широкий спектр возможностей для всестороннего анализа. При этом важна адаптация метрик оценки под конкретные сценарии применения, например, машинный перевод (BLEU, METEOR), анализ настроений (точность, полнота, F1-оценка), суммаризация (ROUGE, BERTScore), Q&A (QAEval, QAFactEval), NER (точность, полнота, InterpretEval), Text-to-SQL (точность полного соответствия, точность выполнения) и система извлечения RAG (верность, релевантность ответа, точность контекста).

Ответственное использование ИИ (RAI) имеет первостепенное значение, требующее оценки LLM-приложений с помощью заранее подготовленных вопросов по категориям, таким как вредоносный контент, справедливость, регулирование, конфиденциальность, галлюцинации и другие. Необходимо учитывать этические аспекты, минимизировать риски, и обеспечивать безопасное использование LLM.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...