Ssylka

Масштабирование языковых моделей: законы и оптимизация

Производительность языковых моделей, основанных на архитектуре Transformer, подчиняется строгим степенным законам. Улучшение достигается за счет масштабирования трех ключевых факторов: количества параметров модели (N), объема обучающих данных (D) и общего объема вычислительных ресурсов (C). Другие архитектурные детали, такие как глубина и ширина сети, влияют на результат незначительно, при условии, что общее количество параметров остается постоянным.
Масштабирование языковых моделей: законы и оптимизация
Изображение носит иллюстративный характер

Зависимость потерь от этих факторов описывается степенными законами. Потери уменьшаются пропорционально N, D и C, причем эти закономерности сохраняются на протяжении нескольких порядков величины. Важно отметить, что для достижения оптимальной производительности необходимо увеличивать все три фактора масштабирования одновременно. Обучение больших моделей на относительно небольших объемах данных с ранней остановкой оказывается более эффективным с точки зрения использования вычислительных ресурсов, чем обучение меньших моделей до сходимости.

Переобучение возникает, когда модель обучается на ограниченном наборе данных. Штраф за переобучение зависит от соотношения N^0.74 / D. Для избежания переобучения при увеличении размера модели, необходимо увеличивать и размер данных, но в меньшей пропорции. Кривые обучения подчиняются предсказуемым степенным законам, которые не зависят от размера модели.

Оптимальный размер батча при обучении также подчиняется степенному закону в зависимости от потерь и составляет примерно 1-2 миллиона токенов для самых больших моделей. Вычислительные ресурсы следует в основном тратить на увеличение размера модели, а не на увеличение времени обучения. По мере масштабирования модели становятся все более эффективными в использовании данных. Эти результаты обеспечивают основу для прогнозирования производительности языковых моделей и оптимизации процесса их обучения.


Новое на сайте

18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для... 18235Почему синхронизируемые ключи доступа открывают двери для кибератак на предприятия? 18234Какова реальная цена суперсилы гриба из Super Mario? 18233Как люксовые бренды контролировали цены и почему за это поплатились? 18232Как диетическая кола растворила массу, вызванную лекарством для похудения