Ssylka

Масштабирование языковых моделей: законы и оптимизация

Производительность языковых моделей, основанных на архитектуре Transformer, подчиняется строгим степенным законам. Улучшение достигается за счет масштабирования трех ключевых факторов: количества параметров модели (N), объема обучающих данных (D) и общего объема вычислительных ресурсов (C). Другие архитектурные детали, такие как глубина и ширина сети, влияют на результат незначительно, при условии, что общее количество параметров остается постоянным.
Масштабирование языковых моделей: законы и оптимизация
Изображение носит иллюстративный характер

Зависимость потерь от этих факторов описывается степенными законами. Потери уменьшаются пропорционально N, D и C, причем эти закономерности сохраняются на протяжении нескольких порядков величины. Важно отметить, что для достижения оптимальной производительности необходимо увеличивать все три фактора масштабирования одновременно. Обучение больших моделей на относительно небольших объемах данных с ранней остановкой оказывается более эффективным с точки зрения использования вычислительных ресурсов, чем обучение меньших моделей до сходимости.

Переобучение возникает, когда модель обучается на ограниченном наборе данных. Штраф за переобучение зависит от соотношения N^0.74 / D. Для избежания переобучения при увеличении размера модели, необходимо увеличивать и размер данных, но в меньшей пропорции. Кривые обучения подчиняются предсказуемым степенным законам, которые не зависят от размера модели.

Оптимальный размер батча при обучении также подчиняется степенному закону в зависимости от потерь и составляет примерно 1-2 миллиона токенов для самых больших моделей. Вычислительные ресурсы следует в основном тратить на увеличение размера модели, а не на увеличение времени обучения. По мере масштабирования модели становятся все более эффективными в использовании данных. Эти результаты обеспечивают основу для прогнозирования производительности языковых моделей и оптимизации процесса их обучения.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...