Ssylka

Проблемы профилирования Python с cProfile

cProfile, встроенный в Python, имеет ограниченные возможности и не всегда подходит для анализа производительности сложных приложений. Основная проблема заключается в формате pstat, где для каждой функции хранится статистика общего времени выполнения и времени, проведенного в самой функции, а также информация о вызванных функциях и их статистике. Эти данные не позволяют точно определить иерархию вызовов и распределение времени, что приводит к некорректной визуализации в инструментах, основанных на иерархических графиках, таких как FlameGraph. Например, вложенная функция может показаться более «тяжелой» по времени чем вызывающая, из-за особенностей агрегирования данных.
Проблемы профилирования Python с cProfile
Изображение носит иллюстративный характер

Существующие инструменты, такие как SnakeViz и flameprof, не исправляют эту проблему, поскольку просто отображают данные из pstat. Это приводит к искажению визуализаций, например, когда функции, находящиеся выше в иерархии, получают дополнительный вес из-за суммирования времени вызванных функций. Кроме того, cProfile не поддерживает многопоточность и асинхронное выполнение, а также замедляет работу программ при профилировании. Это делает его неоптимальным выбором для большинства задач профилирования, особенно для приложений со сложной иерархией вызовов.

Для более глубокого анализа рекомендуется использовать статистические (семплирующие) профайлеры, например, austin, py-spy, pyinstrument или scalene. Они периодически собирают информацию о выполняющихся функциях, что уменьшает замедление при профилировании. Альтернативно, можно использовать детерминированные профайлеры, такие как viztracer, которые записывают каждый вызов функций, предоставляя более точную информацию. Данные из этих профайлеров могут быть загружены в инструменты визуализации, такие как speedscope, и другие плагины для VSCode. gprof2dot, в свою очередь, является подходящим инструментом для построения графов вызовов на основе данных cProfile.


Новое на сайте

18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r